
Proceedings of ”The 6th SEAMS-UGM Conference 2011”
Computer, Graph and Combinatorics, pp. 631–646.

A FRAMEWORK FOR AN LTS SEMANTICS FOR
PROMELA

Suprapto And Reza Pulungan

Abstract. A high-level specification language PROMELA can be used not only to model

interactions that occur in distributed or reactive systems, but also to express requirements

of logical correctness about those interactions. Several approaches to a formal semantics

for PROMELA have been presented, ranging from the less complete formal semantics to

the more complete ones. This paper presents a significantly di↵erent approach to provide

a formal semantics for PROMELA model, namely by an operational semantics given as

a set of Structured Operational Semantics (SOS) rules. The operational semantics of a

PROMELA statement with variables and channels is given by a program graph. The

program graphs for the processes of a PROMELA model constitute a channel system.

Finally, the transition system semantics for channel systems yields a transition system

that formalizes the stepwise behavior of the PROMELA model.

Keywords and Phrases: PROMELA, formal semantics, SOS rules, program graphs, chan-
nel systems, transition systems.

1. PRELIMINARIES

It is still a challenging problem to build automated tools to verify systems especially
reactive ones and to provide simpler formalisms to specify and analyze the system’s
behavior. Such specification languages should be simple and easy to understand, so that
users do not require a steep learning curve in order to be able to use them [1]. Besides,
they should be expressive enough to formalize the stepwise behavior of the processes and
their interactions. Furthermore, they must be equipped with a formal semantics which
renders the intuitive meaning of the language constructs in an unambiguous manner.
The objective of this work is to assign to each model built in the specification language
PROMELA a (labeled) transition system that can serve as a basis for further automated
analysis, e.g., simulation or model checking against temporal logical specifications.

A PROMELA model consists of a finite number of processes to be executed
concurrently. PROMELA supports communications over shared variables and message
passing along either synchronous or bu↵ered FIFO-channels. The formal semantics of

631

632 Suprapto And Reza Pulungan

a PROMELA model can be provided by means of a channel system, which then can
be unfolded into a transition system [1]. In PROMELA, the stepwise behavior of the
processes is specified using a guarded command language with several features of classical
imperative programming languages (variable assignments, conditional and repetitive
commands, and sequential composition), communication actions where processes may
send and receive messages from the channels, and atomic regions that avoid undesired
interleaving [1].

Several researches in formal semantics of PROMELA have been carried out with
various approaches [2, 3, 4]. By considering previous researches, the derivation approach
of formal semantics of PROMELA presented here consists of three phases of transfor-
mation. First, a PROMELA model is transformed into the corresponding program
graphs; then the generated program graphs will constitute a channel system. Finally,
the transition system semantics for the resulting channel systems then produces a tran-
sition system of the PROMELA model that formalizes the operational behavior of that
model. The rules of transitions presented here are operational semantics given as a set
of Structured Operational Semantics (SOS) rules. SOS rules are a standard way to
provide formal semantics for process algebra, and are useful for every kind of operational
semantics.

The discussion of LTS semantics of PROMELA with this approach should be
considered as an initial version that only covers some small parts of PROMELA features.
Therefore, in order to handle more features, an advanced research will be required in
the near future. One thing could have been noticed as a contribution in this research is
the initial implementation of LTS to explain the behavior of PROMELA model.

1.1. PROMELA. PROMELA is a modeling language equipped with communication
primitives that facilitate an abstraction of the analyzed systems, suppressing details that
are not related to the characteristics being modeled. A model in PROMELA consists of
a collection of processes that interact by means of message channels and shared variables.
All processes in the model are global objects. In a PROMELA model, initially only
one process is executed, while all other processes are executed after a run statement [6].
A process of type init must be declared explicitly in every PROMELA model and it
can contain run statements of other processes. The init process is comparable to the
function main() of a standard C program. Processes can also be created by adding
active in front of the proctype declaration as shown in Figure 1.

Line (1) defines a process named Bug, a formal parameter x of type byte and the
body of process is in between and . Line (2) defines the init process containing two run

statements of process Bug with di↵erent actual parameters; the processes start executing
after the run statement. Line (3) creates three processes named Bar, and immediately
the processes are executed.

Communnications among processes are modeled by using message channels that
are capable of describing data transfers from one process to another; they can be either
bu↵ered or rendezvous. For bu↵ered communications, a channel is declared with the
maximum length no less than one, for example, chan buffname = [N] of byte, where
N is a positive constant that defines the size of the bu↵er. The policy of a channel
communication in messages passing is FIFO (first-in-first-out). PROMELA also allows

A Framework for an LTS Semantics for PROMELA 633

(1) proctype Bug(byte x) {

...

}

(2) init {

int pid = run Bug(2);

run Bug(27);

}

(3) active[3] proctype Bar() {

...

}

Figure 1. A general example of PROMELA model

(1) chan <name> = [<cap>] of {<t1>, <t2>, ..., <tn>};

(2) chan ch = [1] of {bit};

(3) chan toR = [2] of {int, bit};

(4) chan line[2] = [1] of {mtype, Msg};

Figure 2. Examples of channel declaration

rendezvous communication, which is implemented as logical expressions of bu↵ered
communications, permitting the declaration of zero length channels, for example, chan
rendcomm = [0] of byte. A channel with zero length means that the channel can pass,
but cannot store messages. It implies that message interactions via such rendezvous
channels are by definition synchronous. Rendezvous communication is binary, for there
are only two processes; i.e., a sender and a receiver can be synchronized in a rendezvous
handshake. The declaration syntax and declaration examples of channels are shown in
Figure 2.

Line (1) declares a channel named name, with capacity cap, and ht1i, . . . , htni
denote the type of the elements that can be transmitted over the channel. Line (2) and
(3) are obvious, and line (4) declares an array of channels of size two, where each has
capacity of one.

Message channels are used to model the transfer of data from one process to
another. Similar to the variables of the basic data types, they are declared either locally
or globally. The statement qname!expr sends the value of expression expr via the channel
(qname), that is, it appends the value of expr to the tail of the channel qname. The
statement qname?msg, on the other hand, retrieves a message from the head of the
channel qname, and assigns it to variable msg. In this case, there must be compatibility
between the type of the value being stored and the type of variable msg. Instead of
sending a single value through the channel, it is allowed to send multiple values per
message. If the number of parameters to be sent per message exceeds the message
channel can store, the redundant parameters will be lost. On the other hand, if the
number of parameters to be sent less than the message channel can store, the values of
the remaining parameters will be undefined. Similarly, if the receive operation tries to

634 Suprapto And Reza Pulungan

proctype One(chan q1) { chan q2; q1?q2; q2!123 }

proctype Two(chan qforb) { int x;

qforb?x;

printf(x = %d\n, x) }

init{ chan qname[2] = [1] of { chan };

chan qforb = [1] of { int };

run One(qname[0]);

run Two(qforb);

qname[0] ! qforb

}

Figure 3. An example of data communication using message channel

retrieve more parameters than are available, the values of the extra parameters will be
undefined; on the other hand, if it retrieves fewer than the number of parameters that
was sent, the extra values will be lost.

The send operation is executable only when the channel being used is not full.
While the receive operation is executable only when the channel (for storing values)
is not empty. Figure 3 shows an example that uses some of the mechanisms in data
communication using message channel. The process of type One has two channels q1
and q2; they are as a parameter and a local channel respectively; while the process of
type Two has only one channel qford as a parameter. Channel qford is not declared as
an array and therefore it does not need an index in send operation at the end of the
initial process. The value printed by the process of type Two will be 123.

The discussion so far is about asynchronous communications between processes
via message channels created in statements such as chan qname = [N] of { byte },
where N is a positive constant that defines the bu↵er size. A channel size of zero, as
in chan port = [0] of { byte }, defines a rendezvous port that can only pass, but
not store, single-byte messages. Message interactions via such rendezvous ports are
synchronous, by definition. Figure 4 gives an example to illustrate this situation. The
two run statements are placed in an atomic sequence to enforce the two processes to start
simultaneously. They do not need to terminate simultaneously, and neither complete
running before the atomic sequence terminates. Channel name is a global rendezvous
port. The two processes synchronously execute their first statement : a handshake on
message msgtype and a transfer of the value 124 to local variable state. The second
statement in process of type XX is not executable, since there is no matching receive
operation in process of type YY.

PROMELA allows several general structures of control flow, namely atomic se-
quences, conditional (if-statement), repetition (do-statement), and unconditional jumps
(go to) [7]. The if-statement has a positive number of choices (guards). If there are at
least two choices executable, it is executable and the guard is chosen non-deterministically.

A Framework for an LTS Semantics for PROMELA 635

#define msgtype 33

chan name = [0] of { byte, byte };

byte name;

proctype XX() {

name!msgtype(124);

name!msgtype(121) }

proctype YY() {

byte state;

name!msgtype(state) }

init { atomic { run XX(); run YY() } }

Figure 4. An example of data communication using message channel

if

:: (n % 2 != 0) -> n = 1

:: (n >= 0) -> n = n-2

:: (n % 3 == 0) -> n = 3

:: else -> skip

fi;

Figure 5. Example of the modified if-statement structure

Otherwise, it is blocked if there is no choice executable. The structure of if-statement
may be modified by replacing choice with else guard as shown in Figure 5. When none of
the guards is executable, the else guard become executable. In this example, statement
skip will be executed when n%2 = 0 and n < 0 and n%3 6= 0. Hence by adding the else
guard, the if-statement will never block.

With respect to the choices, a do-statement has the same syntax as the if-statement

does, and behaves in the same way as an if-statement. However, instead of ending the
statement at the end of the chosen list of statements, a do-statement repeats the choice
selection. Only one option can be selected for execution at a time, and after the option
completes the execution of the structure is repeated. When there is no choice executable
the control will be transfered to the end of the loop; the break statement which is always
executable can be used to exit a do-statement.

Besides, in PROMELA there are also some interesting predefined statements, such
as timeout and assert. The timeout statement is used to model a special condition
that allows a process to abort the waiting for a condition that may never become true,
for example an input from an empty channel. The timeout keyword is a modeling
feature in PROMELA that provides an escape from a hang state. It becomes true only
when no other statements within the distributed system is executable. Figure 6 shows

636 Suprapto And Reza Pulungan

proctype keeper()

{

do

:: timeout -> guard!reset

od

}

Figure 6. The example of timeout usage

proctype monitor () {

(1) assert (n <= 3);

}

proctype receiver () {

...

toReceiver ? msg;

(2) assert (msg != ERROR);

...

}

Figure 7. The examples of assert statement usage in process

the definition of the process that will send a reset message to a channel named guard
whenever the system is blocked.

The assert statement, i.e., assert(any boolean condition) is always executable. If
the specified boolean condition holds (true), the statement has no e↵ect, otherwise,
the statement will produce an error report during the verification process. The assert

statement is often used within PROMELA models to check whether certain properties
are valid in a state. Figure 7 shows that assert statement in line (1) will have no e↵ect
whenever the value of variable n is less than or equal to 3, otherwise it will produce an
error report during the verification process; and similarly to assert statement in line (2).

Another interesting statement in PROMELA is the unless statement, with syntax
{statement1}unless{statement2}. The mechanism of execution of unless statement
might be explained as follows. The start point of the execution is in statement1, but
before each statement in statement1 is executed, enabledness of statement2 is checked. If
statement2 is enabled then statement1 is aborted and statement2 is executed, otherwise
statement1 is executed. Figure 8 illustrates the use of unless statement in a fragment
of codes. The result of the statement execution depends on the value of c: if c is equal
to 4 then x will be equal to 0. Since then statement {x! = 4;x = 1} is not enabled,
statement {x > 3;x = 0} is executed. In case the value of c is 5 then x is equal to 1,
since statement {x! = 4;x = 1} is enabled. This means that statement {x > 3;x = 0} is
aborted and statement {x! = 4;x = 1} is executed.

A Framework for an LTS Semantics for PROMELA 637

byte x = c;

{ x > 3; x = 0 }

unless

{ x != 4; x = 1 }

Figure 8. The examples of assert statement usage in process

1.2. Labeled Transition System. Labeled Transition System or Transition System
(TS) for short is a model utilized to describe the behavior of systems. TS is represented
as a directed graph consisting of a set of nodes and a set of edges or arrows; nodes denote
states and arrows model transitions (the changes of states). A states describes some
information about the system at a certain moment of the system’s behavior, whereas
transition specifies how the system evolves from one state to another. In the case of
a sequential program a transition system describes the sequence of the execution of
statements and may involve the changes of the values of some variables and the program
counter [1].

There have been many di↵erent types of transition systems proposed, however,
action names and atomic propositions always denote the transitions (or state changes)
and the states respectively in TS. Moreover, action names are used to describe the
mechanisms of communication between processes, and the early letters of the Greek
alphabet (such as ↵,�, �, and so on) are used to denote actions. Besides, atomic
propositions formalize temporal characteristics : they express intuitively simple known
facts about each state of the system under consideration. The following is the formal
definition of transition system [1].

Definition 1.1. A Transition System TS is a tuple (S,Act,!, I, AP,L) where S
is a set of states, Act is a set of actions, !✓ S⇥Act⇥S is a transition relation, I ✓ S
is a set of initial states, AP is a set of atomic proposition, and L is a labeling function

defined as L : S ! 2AP
. TS is called finite if S,Act, and AP are all finite.

1.3. Program Graph. A program graph (PG) over a set of typed variables is a
digraph (directed graph) whose arrows are labeled with conditions on these variables
and actions. The e↵ect of the actions is formalized by means of a mapping : E↵ect :

Act ! Eval(V ar) ⇥ Eval(V ar), which indicates how the evaluation ⌘ of variables is
changed by performing an action. The formal definition of program graph is follows.

Definition 1.2. A Program Graph PG over set V ar of typed variables is a tuple

(Loc,Act, Effect, ,!, Loc0, g0) where Loc is a set of locations, Act is a set of actions,

Effect : Act ! Eval(V ar)⇥Eval(V ar) is the e↵ect function, ,!✓ Loc⇥Cond(V ar)⇥
Act⇥ Loc is the conditional transition relation, Loc0 ✓ Loc is a set of initial locations,

and g0 2 Cond(V ar) is the initial condition.

` g:↵,! `0 is shorthand for (`, g,↵, `0) 2,!. The condition g is called the guard of
conditional transition ` g:↵,! `0, therefore, if g is tautology then conditional transition
would simply be written ` ↵

,!`0. The behavior in ` 2 Loc depends on the current variable
evaluation ⌘. A nondeterministic choice is made between all transitions ` g:↵,! `0 which

638 Suprapto And Reza Pulungan

satisfy condition g in evaluation ⌘ (i.e., ⌘ |= g). The execution of ↵ changes the variables
evaluation according to E↵ect(↵, ⇧). The system changes into `0 subsequently, otherwise,
the system stop.

Each program graph can be interpreted as a transition system. The underlying
transition system of a program graph results from unfolding (or flattening). Its states
consist of a control component, i.e., a location of the program graph, together with an
evaluation ⌘ of the variables. States are thus pairs of the form h`, ⌘i. An initial state
is initial location that satisfies the initial condition g0. To formulate properties of the
system described by a program graph, the set AP of propositions is comprised of location
2 Loc, and Boolean conditions for the variables.

Definition 1.3. Transition System Semantics of Program Graph The transition

system TS(PG) of program graph PG = (Loc,Act, Effect, ,!, Loc0, g0) over variables

set V ar is (S,Act,!, I, AP,L) where

• S = Loc⇥ Eval(V ar)
• !✓ S ⇥Act⇥ S is defined by the rule

` g:↵
,! `

0
^⌘|=g

h`,⌘i ↵

! h`0 ,Effect(↵,⌘)i
• I =

�

h`, ⌘i|` 2 Loc0, ⌘ |= g0

• AP = Loc [Cond(V ar)
• L(h`, ⌘i) = {`} [{g 2 Cond(V ar)|⌘ |= g}.

1.4. Parallelism and Communications. The mechanism to provide operational mod-
els for parallel systems by means of transition systems ranges from simple one where
no communication between the participating transition systems takes place, to more
advanced (and realistic) schemes where messages can be transfered, either synchronously
(by means of handshaking) or asynchronously (by bu↵er with a positive capacity). Given
the operational (stepwise) behavior of the processes that run in parallel with transition
systems TS1, TS2, . . . , TSn respectively, the purpose is to define an operator k such that
:

TS = TS1kTS2k . . . kTSn,

is a transition system that specifies the behavior of the parallel composition of
transition system TS1 through TSn. The operator k is assumed to be commutative and
associative, and of course the nature of k will depend on the kind of communication
that is supported. TSi may again be a transition system that is composed of several
transition systems (TSi = TSi,1kTSi,2k . . . kTSi,n

i

).

Definition 1.4. Interleaving of Transition Systems Let TSi = (Si, Acti,!i, Ii, APi, Li)
i = 1, 2, be two transition systems. The transition system TS1|||TS2 is defined by :

TS1|||TS2 = (S1 ⇥ S2, Act1 [Act2,!, I1 ⇥ I2, AP1 [AP2, L)

where the translation relation ! is defined by the following rules :

s1
↵

!1
s
0
1

hs1,s2i ↵

! hs01,s2i
and

s2
↵

!2
s
0
2

hs1,s2i ↵

! hs1,s
0
2i

and the labeling function is defined by L(hs1, s2i) = L(s1) [L(s2).

A Framework for an LTS Semantics for PROMELA 639

1.5. Communication via Shared Variables. The interleaving operator ||| can be
used to model asynchronous concurrency in which the subprocess acts completely
independent of each other, i.e., without any form of message passing or contentions
on shared variables. The interleaving operator for transition systems is, however, too
simplistic for most parallel systems with concurrent or communicating components.

In order to deal with parallel programs with shared variables, an interleaving
operator will be defined on the level of program graphs (instead of directly on transition
systems). The interleaving of program graphs PG1 and PG2 is denoted PG1|||PG2.
The underlying transition system of the resulting program graph PG1|||PG2, i.e.,
TS(PG1|||PG2) describes a parallel systems whose components communicate via shared
variables. In general, TS(PG1|||PG2) 6= TS(PG1)|||TS(PG2).

Definition 1.5. Interleaving of Program Graphs
Let PGi = (Loci, Acti, Effecti, ,!i, Loc0,i, g0,i), for i = 1, 2 are two program graphs

over the variables V ari. Program graph PG1|||PG2 over V ar1 [V ar2 is defined by

PG1|||PG2 = (Loc1 ⇥ Loc2, Act1
U

Act2, Effect, ,!, Loc0,1 ⇥ Loc0,2, g0,1 ^ g0,2)

where ,! is defined by the rules :

`1
g:↵
,!1

`
0
1

h`1,`2i g:↵
,! h`01,`2i

and

`2
g:↵
,!2

`
0
2

h`1,`2i g:↵
,! h`1,`

0
2i

The program graphs PG1 and PG2 have the variables V ar1 \ V ar2 in com-
mon. These are the shared (sometimes also called global) variables. The variables in
V ar1�V ar2 are the local variables of PG1, and similarly, those in V ar2�V ar1 are the
local variables of PG2.

1.6. Handshaking. The term handshaking means that concurrent processes that want
to interact have to do this in a synchronous fashion. Hence, processes can interact only
if they are both participating in this interaction at the same time - they shake-hand [1].

Definition 1.6. Handshaking (Synchronous Message Passing) Let TSi = (Si, Acti,!i

, Ii, APi, Li), i = 1, 2 be transition systems and H ✓ Act1 \Act2 with ⌧ /2 H. The tran-

sition system TS1 kH TS2 is defined as follow :

TS1 kH TS2 = (S1 ⇥ S2, Act1 [Act2,!, I1 ⇥ T2, AP1 [AP2, L) where L(hs1, s2i) =
L1(s1) [L2(s2), and the transition relation ! is defined by the rules :

• interleaving for ↵ /2 H :

s1
↵

!1
s
0
1

hs1,s2i ↵

! hs01,s2i
s2

↵

!2
s
0
2

hs1,s2i ↵

! hs1,s
0
2i

• handshaking for ↵ 2 H :

s1
↵

!1
s
0
1^s2

↵

!2
s
0
2

hs1,s2i ↵

! hs01,s
0
2i

Notation : TS1||TS2 abbreviates TS1||HTS2 for H = Act1 \Act2

1.7. Channel Systems. Intuitively, a channel system consists of n (data-dependent)
processes P1 trough Pn. Each Pi is specified by a program graph PGi which is extended
with communication actions. Transitions of those program graphs are either the usual

640 Suprapto And Reza Pulungan

conditional transitions (labeled with guards and actions), or one of the communication
actions with their respective intuitive meaning :

c!v transmit the value v along channel c,
c?x receive a message via channel c and assign it to variable x.

Let Comm = c!v, c?x|c 2 Chan, v 2 dom(c), x 2 V ar with dom(x) ◆ dom(c) denote the
set of communication actions where Chan is a finite set of channels with typical element
c.

Definition 1.7. Channel System
A program graph over (V ar, Chan) is a tuple PG = (Loc,Act, Effect, ,!, Loc0, g0)
where

,!✓ Loc⇥ (Cond(V ar)⇥ (Act [Comm)⇥ Loc).

A channel system CS over (V ar, Chan) consists of program graphs PGi over (V ari, Chan)
(for 1 i n) with V ar =

S

1in V ari. Channel system is denoted by

CS = [PG1|PG2| . . . |PGn].

The transition relation ,! of a program graph over (V ar, Chan) consists of two
types of conditional transitions. Conditional transitions ` g:↵,! `’ are labeled with guards
and actions. These conditional transitions can happen if the guard holds. Alternatively,
conditional transitions may be labeled with communication actions. This yields con-
ditional transitions of type ` g:c!v,! `’ (for sending v along c) and ` g:c?x,! `’ (for receiving a
message along c).

Definition 1.8. Transition System Semantics of a Channel System Let CS =
[PG1|PG2| . . . |PGn] be a channel system over (Chan, V ar) with PGi = (Loci, Acti, Effecti, ,!i

, Loc0,i, g0,i), for 0 < i n. The transition system of CS, denoted TS(CS), is the tuple

(S,Act,!, I, AP, L) where :

• S = (Loc1 ⇥ . . .⇥ Locn)⇥ Eval(V ar)⇥ Eval(Chan)
• Act =

U

0<in Acti
U

{⌧}
• ! is defined by the following rules :

– interleaving for ↵ 2 Acti :
`
i

g:↵
,! `

0
i

^⌘|=g

h`1,...,`i,...,`n,⌘,⇠i ↵

! h`1,...,`
0
i

,...,`
n

,⌘0 ,⇠i

⌘
0
= Effect(↵, ⌘).

– asynchronous message passing for c 2 Chan, cap(c) > 0 :

- receive a value along channel c and assign it to variable x :

`
i

g:c?x
,! `

0
i

^⌘|=g^len(⇠(c))=k>0^⇠(c)=v1...vk

h`1,...,`i,...,`n,⌘,⇠i ⌧

! h`1,...,`
0
i

,...,`
n

,⌘0 ,⇠0 i

where ⌘
0
= ⌘[x := v1] and ⇠

0
= ⇠[c := v2 . . . vk].

- transmit value v 2 dom(c) over channel c :

`
i

g:c!v
,! `

0
i

^⌘|=g^len(⇠(c))=k<cap(c)^⇠(c)=v1...vk

h`1,...,`i,...,`n,⌘,⇠i ⌧

! h`1,...,`
0
i

,...,`
n

,⌘,⇠0 i

where ⇠
0
= ⇠[c := v1v2 . . . vkv].

A Framework for an LTS Semantics for PROMELA 641

– synchronous message passing over c 2 Chan, cap(c) = 0 :

`
i

g1:c?x
,! `

0
i

^⌘|=g1^⌘|=g2^`
j

g2:c!v
,! `

0
j

^i 6=j

h`1,...,`i,...,`j ,...,`n,⌘,⇠i ⌧

! h`1,...,`
0
i

,...,`
0
j

,...,`
n

,⌘0 ,⇠i

where ⌘
0
= ⌘[x := v].

• I =
n

h`1, . . . , `n, ⌘, ⇠0i|80 < i n.(`i 2 Loc0,i ^ ⌘ |= g0,i)
o

• AP =
U

0<in Loci
U

Cond(V ar)

• L(h`1, . . . , `n, ⌘, ⇠i) =
�

h`1, . . . , `n

[
�

g 2 Cond(V ar)|⌘ |= g

.

2. TRANSFORMATION

PROMELA is a descriptive language used to model especially concurrent systems.
Elements of PROMELA model P mostly consist of a finite number of processes P1, . . . , Pn

to be executed concurrently. PROMELA supports communication over shared variables
and message passing along either synchronous or asynchronous (bu↵ered FIFO-channels).
The formal semantic of a PROMELA programs can be provided by means of a channel
system, which then can be unfolded into a transition system.

As already mentioned in the previous section, the discussion here will only cover
small part of PROMELA features, which primarily concentrates on the basic elements of
PROMELA. A basic (element) PROMELA model consists of statements that represent
the operational behavior of the processes P1, P2, . . . , Pn together with a Boolean condition
on the final values of the program variables. It is then represented as P = [P1|P2| . . . |Pn],
where each process Pi is normally built by one or more statement(s). So that, the
statements formalize the operational behavior of the process Pi. The main element
of the statements are the atomic command (skip), variable assignment (x := expr),
communication activities: reading a value for variable x from channel c (c?x) and sending
the current value of expression expr over channel c (c!expr), conditional commands
(if..fi), and repetitive commands (do..od). The syntax of basic PROMELA statements
is shown in Figure 9.

stmnt ::= skip | x := expr | c?x | c!expr | stmnt1; stmnt2

| atomic {assignments}

| if :: g1 -> stmnt1 ... :: gm -> stmntm fi

| do :: g1 -> stmnt1 ... :: gm -> stmntm od

Figure 9. Syntax of basic PROMELA-statements

Considering the fact that the PROMELA-statement itself is built by either variables,
expressions or channels; before proceeding further discussion about statements it will be
wiser to do a brief discussion of them. The variables in a basic PROMELA model P
are used to store either global information about system as a whole or information that
is local to one specific process Pi, depending on where the variable declaration takes
place. They may be in (basic) type of (bit, Boolean, byte, short, integer and channel).
Similarly, data domains for the channels must be specified: they must be also declared

642 Suprapto And Reza Pulungan

to be synchronous or FIFO-channels of predefined capacity. Furthermore, variable can
be formally defined as :

(name, scope, domain, inival, curval),

where name is variable name, scope is either global or local to a specific process,
domain is a finite set of integers, inival is the initial value of variable, and curval is
current value of variable. It is assumed that the expression used in assignments for
variable x are built by constants in set of domain of x dom(x), variable y of the same
type as x (or a subtype of x), and operators on dom(x), such as Boolean connectives ^,
_, and ¬ for dom(x) = {0, 1} and arithmetic operators +, -, ⇤, etc. for dom(x) = <
(set of real numbers). The example of Boolean expressions are guards that determine
conditions on the values of the variables, (guards 2 Cond(Var)). In accordance to
Figure 8, x is a variable in Var, expr is an expression, and chan is a channel of arbitrary
capacity. Type compatibility of variable x and the expression expr in assignments x

:= expr is highly required. Similarly, for the actions c?x and c!expr are required that
dom(c) ✓ dom(x) and that the type of the expression expr corresponds to dom(c). The
gis in both command if..fi and do..od are guards, and gi 2 Cond(Var) by assumption.
The body assignments of an atomic region is a nonempty sequential composition of
assignments, and it has the form :

x1 := expr1;x2 := expr2; . . . ;xm := exprm

where m � 1, x1, . . . , xm are variables and expr1, . . . , exprm expressions such that
the types of xi and expri are compatible. The intuitive meaning of the statements in
Figure 8 can be explained as follows. skip represents a process that terminates in one
step, and it does not a↵ect the variables values neither channels contents. Variable x
in assignment x := expr is assigned the value of the expression expr given the current
variable evaluation. stmnt1; stmnt2 denotes sequential composition, i.e., stmnt1 is
executed first and after the execution of stmnt1 terminates, stmnt2 is executed. In
basic PROMELA, the concept of atomic region is realized by statement of the form
atomic{stmnt}; the execution of stmnt is treated as an atomic step that cannot be
interleaved with the activities of other processes. The statements of the form :

if :: g1 ! stmnt1 . . . :: gm ! stmntm fi

stand for a non-deterministic choice between the statement stmnti for which the
guard gi is satisfied in the current state, i.e., gi holds for the current valuation of the
variables. However, the if..fi command will blocks if all of guard gis do not hold. This
blocking must be seen by other processes that run in parallel that might end the blocking
by altering the shared variable values so that one or more of the guards may finally
become hold. Similarly, the statements of the form :

do :: g1 ! stmnt1 . . . :: gm ! stmntm od

represent the iterative execution of the non-deterministic choice among the guarded
commands gi ! stmnti, where guard gi holds in the current state. do..od loops do not
block in a state when all guards are violated, instead the do..od loop is aborted.

2.1. Semantics. The operational semantics of basic PROMELA statement with vari-
ables and channel from (Var, Chan) is given by a program graph over (Var, Chan). The

A Framework for an LTS Semantics for PROMELA 643

y := x Exit

conditional command

Initial state

true : x := 0 x > 1 : y := x+ y

true : y := x

Figure 10. Program graph for conditional command if..fi

program graphs PG1, . . . , PGn for the processes P1, . . . , Pn of a basic PROMELA model
P = [P1| . . . |Pn] constitute a channel system over (Var, Chan). The transition system
semantics for channel systems then results a transition system TS (P) that formalizes
the operational behavior of P [1].

The program graph associated with a basic PROMELA statement stmnt formalizes
the control flow of stmnt execution. It means that the sub-statements play the role
of the locations. For instance, in modeling termination, a special location exit is used.
Thus in a program graph, any guarded command g ! stmnt corresponds to an edge
with the label g : ↵ where ↵ represents the first action of stmnt. For example, consider
the statement :

conditional_command = if

:: x > 1 -> y := x + y

:: true -> x := 0; y := x

fi

The program graph associated with this command may be explained as follows.
conditional command is viewed as an initial location of the program graph; from this
location there are two outgoing edges : one with the guard x > 1 and action y := x +

y leading to (location) exit, and the other edge with the guard true and action x := 0

resulting in the location for the statement y := x. Since y := x is deterministic there
is a single edge with guard true and action y := x leading to location exit. Figure 10
shows the program graph for conditional command if..fi.

2.2. Substatement. The set of sub-statements of a basic PROMELA statement stmnt
is defined recursively. For statement stmnt 2 {skip, x := expr, c?x, c!expr} the set of
sub-statements is sub(stmnt) = {stmnt, exit}. For example, sub(x := expr) = {x :=
expr, exit}, sub(c?x) = {c?x, exit}, etc. For sequential composition :
sub(stmnt1; stmnt2) = stmnt; stmnt2|stmnt 2 sub(stmnt1){exit} [sub(stmnt2).
For example, sub(x := expr; skip) = {x := expr; skip, skip, exit} where {stmnt;
stmnt2|stmnt 2 sub(stmnt1)\{exit}} is {x := expr; skip} and sub(stmnt2) = sub(skip) =
{skip, exit}.

644 Suprapto And Reza Pulungan

For conditional commands, the set of sub-statement is defined as the set consisting
of the if..fi statement itself and sub-statements of its guarded commands. Then, its
sub-statements is defined as :

sub(conditional command) = {conditional command}[sub(stmnt1)[. . .[sub(stmntn).

For example, sub(if :: x > 1 ! y := x+ y :: true ! x := 0; y := x fi) = {if ::
x > 1 ! y := x+ y :: true ! x := 0; y := x fi, y := x+ y, x := 0; y := x, y :=
x, exit}.

The sub-statements of loop command (loop = do :: g1 ! stmnt1 . . . :: gn !
stmntn od) is defined as : sub(loop) = {loop, exit}[{stmnt; loop|stmnt[sub(stmnt1) {exit}}[
. . . [{stmnt; loop|stmnt [sub(stmntn)\{exit}}. For example, sub(do :: x > 1 ! y :=
x + y :: y < x ! x := 0; y := x od) = {do :: x > 1 ! y := x + y :: y < x !
x := 0; y := x od, y := x+ y; do :: x > 1 ! y := x+ y :: y < x ! x := 0; y :=
x od, x := 0; y := x; do :: x > 1 ! y := x+ y :: y < x ! x := 0; y := x od, y :=
x; do :: x > 1 ! y := x+ y :: y < x ! x := 0; y := x od, exit}.

For atomic regions atomic{stmnt}, the sub-statement is defined as:

sub(atomic{stmnt}) = {atomic{stmnt}, exit}.

Then, for example the sub-statements of atomic{b1 := true;x := 2} is sub(atomic
{b1 := true;x := 2}) = {atomic{b1 := true;x := 2}, exit}.

3. INFERENCE RULES

The inference rules for the atomic commands, such as skip, assignment, communi-

cation actions, and sequential composition, conditional and repetitive commands give
rise to the edges of a large program graph in which the set of locations agrees with the
set of basic PROMELA statements [1]. Thus, the edges have the form :

stmnt g:↵�!stmnt0 or stmnt g:comm
�! stmnt0

where stmnt is a basic PROMELA statement, stmnt is sub-statement of stmnt, g is
a guard, a is an action, and comm is a communication actions c?x or c!expr. The
subgraph consisting of the sub-statements of Pi then results in the program graph PGi

of process Pi as a component of the model P .

(1) The semantics of skip is given by a single axiom formalizing that the execution
of skip terminates in one step without a↵ecting the variables.

skip true:id
�! exit

where id denotes an action that does not change the values of the variables, i.e.,
for all variable evaluations ⌘, E↵ect(id, ⌘) = ⌘.

(2) Similarly, the execution of a statement consisting of an assignment x := expr
has trivial guard (true) and terminates in one step.

x:=expr true:assign(x,expr)
�! exit

A Framework for an LTS Semantics for PROMELA 645

where assign(x, expr) denotes the action that changes the value of variable
x according to the assignment x := expr and does not a↵ect the other vari-
ables, i.e., for all variable evaluation ⌘ (⌘ 2 Eval(V ar)) and y 2 V ar then
E↵ect(assign(x, expr), ⌘)(y) = ⌘(y). If y 2 x and E↵ect(assign(x, expr), ⌘)(x)
is the value of expr when evaluated over ⌘.

(3) For the communication actions c!expr and c?x the following axiom apply :
cap(c) 6=0

c?x dom(c)✓dom(x):c?x
�! exit

and len(c)<cap(c)

c!expr dom(Eval(expr))✓dom(c):c!expr

�! exit

where cap(c) is maximum capacity of channel c, len(c) is current number of
messages in channel c, dom() is set of type, and Eval(expr) is the value of
expression expr after evaluated.

(4) For an atomic region atomicx1 := expr1; ...;xm := exprm, their e↵ect is defined
as the cumulative e↵ect of the assignments xi := expri. It can be defined by the
rule:

atomicx1:=expr1;...;xm

:=expr
m

true:assign(x,expr)
�! exit

where ↵0 = id,↵i = Effect(assign(xi, expri), Effect(a(i� 1), ⌘)) for 1 i
m.

(5) There are two defined rules for sequential composition stmnt1; stmnt2 that
distinguish whether stmnt1 terminates in one step. If stmnt1 does not terminate
in one step, then the following rule applies :

stmnt1
g:↵
�! stmnt

0
1 6=exit

stmnt1;stmnt2
g:↵
�! stmnt

0
1;stmnt2

Otherwise, if stmnt1 terminates in one step by executing action a, then the
control of stmnt1; stmnt2 moves to stmnt2 after executing a. The rule is :

stmnt1
g:↵
�! exit

stmnt1;stmnt2
g:↵
�! stmnt2

(6) The e↵ect of a conditional command conditional command = if :: g1 !
stmnt1 . . . :: gn ! stmntn fi is formalized by the rule :

stmnt
i

h:↵
�! stmnt

0
i

conditional command g

i

^h:↵
�! stmnt

0
i

(7) For repetition command loop = do :: g1 ! stmnt1 . . . :: gn ! stmntn od is
defined three rules. The first two rules are similar to the rule for conditional
command, but the control returns to loop after guarded command execution
completes. This corresponds to the following rules :

stmnt
i

h:↵
�! stmnt

0
i

6=exit

loop g

i

^h:↵
�! stmnt

0
i

;loop
dan

stmnt
i

h:↵
�! stmnt

0
i

loop g

i

^h:↵
�! loop

The third rule applies when none of the guards g1, g2, . . . , gn holds in the current
state :

loop¬g1^...^¬g

n

�! exit

So far, some basic statements of PROMELA (skip, assignment, communication actions,

atomic region, sequential composition, conditional command, and repetition command)
have been successfully defined their rules (axioms) for inferencing. However, for the sake
of completeness it will be required a large e↵ort to accomplish this work. Therefore, this
should be becoming a further consideration.

646 Suprapto And Reza Pulungan

4. CONCLUDING REMARKS

A new approach to a formal semantics for PROMELA has been presented. This
approach first derives channel system from PROMELA model P which consists of a finite
number of processes P1, P2, . . . , Pn to be executed concurrently (P = [P1|P2| . . . |Pn]).
The channel system CS = [PG1|PG2| . . . |PGn], where PGi corresponds to process
Pi, so that the transition system of CS consists of transition system of PGi. Each
program graph Pi can be interpreted as a transition system, but the underlying transition
system of a program graph results from unfolding (flattening). Then the transition
system for channel systems yields a transition system TS(P) that formalizes the stepwise
(operational) behavior of PROMELA model P . This approach is modular that makes
reasoning and understanding the semantics easier. It is more practical and fundamental
than the one given in [8]. Therefore, this approach should be more suitable for reasoning
about the implementation of a PROMELA interpreter.

References

[1] Baier, C., and Katoen, J. P., Principles of Model Checking, The MIT Press, Cambridge,
Massachusetts, 2008.

[2] Bevier, W. R., Toward an Operational Semantics of PROMELA in ACL2, Proceedings of the
Third SPIN Workshop, SPIN97, 1997.

[3] Natarajan, V. and Holzmann, G. J., Outline for an Operational Semantic of PROMELA,
Technical report, Bell Laboratories, 1993.

[4] Ruys, T., SPIN and Promela Model Checking, University of Twente, Department of Computer
Science, Formal Methods and Tools, 1993.

[5] Shin, H., Promela Semantics, presentation from The SPIN Model Checker by G. J. Holzmann,
2007.

[6] Spoletini, P., Verification of Temporal Logic Specification via Model Checking, Politecnico Di
Milano Dipartimento di Elettronicae Informazione, 2005.

[7] Vielvoije, E., Promela to Java, Using an MDA approach, TUDelft Software Engineering Research
Group Department of Software Technology Faculty EEMCS, Delft University of Technology Delft,
the Netherlands, 2007.

[8] Weise, C., An Incremental formal semantics for PROMELA, Prentice Hall Software Series,
Englewood Cli↵s, 1991.

Suprapto

Universitas Gadjah Mada.

e-mail: sprapto@ugm.ac.id

Reza Pulungan

Universitas Gadjah Mada.

e-mail: pulungan@ugm.ac.id

