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THE ORDER OF PHASE-TYPE DISTRIBUTIONS

REZA PULUNGAN

Abstract. This paper lays out the past and the future of one of the most interesting
research problems in the area of phase-type distributions: the problem of their minimal
representations. We will chronologically present contemporary results, including our own
contributions to the problem, and provide several pointers and possible approaches in
attempting to solve the problem in future work.
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1. INTRODUCTION

The problem of minimal representations remains one of the open problems in the
research area of phase-type (PH) distributions [16, 18]. Given a phase-type distribution,
a minimal representation is an absorbing Markov chain with the fewest number of
states, whose distribution of time to absorption is governed by the same phase-type
distribution. Obtaining minimal representations is important in various circumstances,
including, but not limited to, modeling formalisms that support compositionality [13,
2, 12]. In such circumstance, models are constructed by composing smaller components
via various operations that usually result in exponential blowups of the state space.
Ensuring that all components and all intermediate results of the composition come in
minimal representations will significantly reduce these blowups.

Previous researches [1, 19, 20, 3, 4, 15, 5, 6] have produced several techniques to
obtain these minimal representations. However, the frontier is still limited to acyclic
phase-type distributions [9, 10, 11, 22|, namely those phase-type distributions having
at least one Markovian representation that contains no cycle. Even in this case, the
resulting algorithm is not yet satisfactory, for it contains non-linear programming, which
can be inefficient in many cases.
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This paper lays out the past and the future of one of the most interesting research
problems in the area of phase-type distributions: the problem of their minimal repre-
sentations. We will chronologically present contemporary results, including our own
contributions to the problem, and provide several pointers and possible approaches in
attempting to solve the problem in future work.

The paper is organized as follows: Section 2 introduces phase-type distributions
and other concepts required throughout the paper. In this section, we also formulate
the problem of the order of phase-type distributions. Section 3 lays out previous partial
solutions to the problem. In Section 4, we describe our contribution in solving the prob-
lem by proposing an algorithm to reduce the size of acyclic phase-type representations.
The paper is concluded in Section 5.

2. PRELIMINARIES

2.1. Phase-Type Distributions. Let the stochastic process {X(t) € S|t € Rt} be
a homogeneous Markov process defined on a discrete and finite state space
S ={s1,82,""+ ,5n,Snt1}

and with time parameter t € R™ := [0, 00). The Markov process is a finite continuous-
time Markov chain (CTMC). We view the structure of such a CTMC as a tuple
M = (8,R) where R a rate matrix R : S x § — RT. The rate matrix R is re-
lated to the corresponding infinitesimal generator matrix by: Q(s,s’) = R(s,s’) if
s # s else Q(s,s) = =3 ., R(s, &) for all s,s" € S. If state s,,41 is absorbing (i.e.,
Q(Sn+1,8n+1) = 0) and all other states s; are transient (i.e., there is a nonzero proba-
bility that the state will never be visited once it is left, or equivalently, there exists at
least one path from the state to the absorbing state), the infinitesimal generator matrix
of the Markov chain can be written as:

A A
Q:{G 0}

Matrix A is called a PH-generator and it is non-singular because the first n states
in the Markov chain are transient. Vector A is a column vector where its component A;
for i = 1,--- ,n represents the transition rate from state s; to the absorbing state. The
Markov chain is fully specified by the generator matrix Q and the initial probability
vector (&, an41), where @ is an n-dimensional row vector corresponding to the initial
probabilities of the transient states and «,, 1 is the initial probability to be immediately
in the absorbing state. Therefore al+ Qnt+1 = 1, where 1 is an n-dimensional column
vector whose components are all equal to 1.

Definition 2.1 (Phase-Type Distribution [16]). A probability distribution on RT is
a phase-type (PH) distribution if and only if it is the distribution of the time until
absorption in a Markov process of the type described above.

The pair (&, A) is called the representation of the PH distribution and PH (&, A)
is used to denote the PH distribution with representation (&, A).
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The probability distribution of the time until absorption in the Markov chain
(hence of PH distribution) is given by:

F(t)=1—dexp(At)T, fort>0. (1)
The Laplace-Stieltjes transform (LST) of the PH distribution is given by:

o
fls) = / exp(—st)dF(t) = @(sI — A) " A + oy, (2)
—0o0
where s € RT and I is the n-dimensional identity matrix. Consider the LST of the PH
distribution in (2). This transform is a rational function, namely:

f(s)=a(sI— A) A+« :E
f(s)=a(sI—A)" A+ anp 0(s)’

for some polynomials P(s) and Q(s) # 0.

2.2. Acyclic Phase-Type Distributions. An interesting subset of the family of PH
distributions is the family of acyclic PH distributions. The family can be identified
by the fact that they have triangular representations. A triangular representation is a
representation (&, A) where matrix A, under some permutation of its components, is
an upper triangular matrix.

In [19], O’Cinneide proved the following theorem, which characterizes acyclic PH
distributions in terms of the properties of their density functions and their LSTs.

Theorem 2.1 ([19]). A probability distribution defined on RT, which is not the point
mass at zero, is an acyclic PH distribution if and only if (1) its density function is
strictly positive on (0,00), and (2) its LST is rational and has only real poles.

Thus, any general PH representation—possibly containing cycles—represents an
acyclic PH distribution (and hence has an acyclic representation) whenever the poles
of its LST are all real numbers.

2.3. Ordered Bidiagonal Representations. Let PH-generator:

_)‘1 )\1 0 0

0 —/\2 )\2 0

Bi(A, Ao, 5 M) = 0 R VAR 0
0 0 0 A

If A\, > A1 > --- > A1 > 0 and, then a PH representation ([;, Bi(A1, A2, , An)) s
called an ordered bidiagonal representation.

2.4. Size of Representation, Algebraic Degree, and Order. All PH representa-
tions we are dealing with in this paper are assumed to be irreducible. A representation
is irreducible if for the specified initial distribution any transient state is visited with
non-zero probability.

For a PH distribution with an irreducible representation (&, A), the size of the
representation is defined as the dimension of matrix A. The degree of the denominator
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polynomial of its LST expressed in irreducible ratio is called the algebraic degree—or
simply the degree—of the distribution.

It is known [16, 18] that a given PH distribution has more than one irreducible
representation. The size of a minimal irreducible representation, namely a representa-
tion with the fewest possible number of states, is referred to as the order of the PH
distribution. O’Cinneide in [18] showed that the order of a PH distribution may be
different from, but at least as great as, its algebraic degree. Therefore the following
lemma is straightforward.

Theorem 2.2. Let n be the size of a PH representation whose size is equal to the
algebraic degree of its PH distribution. The the order of the PH distribution is n.

2.5. The Problem of the Order of Phase-Type Distributions. The main problem
addressed in this paper is the problem of the order of PH distributions, namely: given a
PH distribution, what is its order? Stated differently, we would like to find the minimal
number of states required to represent a given PH distribution as an absorbing CTMC.
The PH distribution can be given in various ways: as a probability distribution in
mathematical formulas, as a Laplace-Stieltjes transform, or even as a PH representation
of a certain size.

As a byproduct, of course, it would be advantageous to also be able to devise
methods to compute a minimal representation—namely a PH representation whose size
is equal to the order—of the given PH distribution.

3. PREVIOUS RESULTS

In this section, previous results on the partial solutions to the problem of the order
of PH distributions are presented. The first early result is given in Theorem 2.2. This
theorem is a restatement of lemmas found in [16, 18]. The theorem basically establishes
that the lower bound of the order of PH distributions is their respective algebraic degree.

In the following subsections, we present further partial results, starting in acyclic
PH distributions, the general PH distributions, the relationship between simplicity and
order, and, in the end, an attempt to find non-minimal but nonetheless sparse repre-
sentations.

3.1. Acyclic Phase-Type Distributions. Cumani in [7] presented three canonical
forms of acyclic PH representations. Of particular interest to us, he proved Theorem 3.1.
Aside from the ordered bidiagonal representation, he also provided two other canonical
forms and straightforward procedures to transform one to others. A similar theorem
was proved by O’Cinneide in [19].

Theorem 3.1 ([7]). Any PH distribution with an acyclic PH representation of a certain
size has an ordered bidiagonal representation of equal to or less size.
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HE and Zhang in [9] provided an algorithm, called the spectral polynomial algo-
rithm, to obtain the ordered bidiagonal representation of any given acyclic PH repre-
sentation. The spectral polynomial algorithm is of complexity O(n?) where n is the size
of the given acyclic PH representation.

In [19], O’Cinneide formally characterized acyclic PH distributions by proving
Theorem 2.1. The characterization basically relates acyclic PH distributions to the
shape of their density functions and LSTs. The theorem maintains that the LST of any
acyclic PH distribution is a rational function and all of its poles are real. Hence, a PH
representation could be cyclic; but as long as its LST has only real poles, there must
exist an acyclic PH representation that has the same PH distribution.

The following three theorems by Commault and Chemla in [4] specify certain
conditions for acyclic PH representations to be minimal, namely to have their size be
equal to their respective order.

Theorem 3.2 ([4]). The order of a PH distribution with LST f(s) = P(s)/Q(s), where
P(S) and Q(s) are co-prime polynomials, such that Q(s) has degree n with n real roots
and P(s) has degree less than or equal to one, is n.

Theorem 3.2 establishes that the convolution of several exponential distributions
always produces minimal PH representations. This means that Erlang representations—
formed by a convolution of several exponential distributions of the same rate—and
hypoexponential representations—formed by a convolution of several exponential dis-
tributions of possibly different rates—are always minimal.

Theorem 3.3 ([4]). Consider a PH distribution with LST f(s) = P(s)/Q(s), where
P(S) and Q(s) are co-prime polynomials with real roots, such that:

P(s) = (m) (M) 1> pn > 0. and
M1 M2

n )\Z
Q(s):H(S—; ), AL> A > 20, > 0.
i=1 ¢

If po > Ay and (p1 + p2) = (An—1 + An), then the order of the distribution is n.

Theorem 3.4 ([4]). Consider a PH distribution with LST f(s) = P(s)/Q(s), where
P(S) and Q(s) are co-prime polynomials with real roots, such that:

m
P(S):H(%>, 1> pe >, >0, and
i=1 v

s+ N
1
= M > A > o>\, >0, .
Q(s) E( X\, >7 12 A2 2 > n>m
If i 2> Ay hm—1 = An—1," "+ s 41 = An—m+1, then the order of such PH distribution is
n.

Theorems 3.3 and 3.4 provides several conditions for the convolution of several
exponential distributions of possibly different rates, which starts not only from the first
state, to be minimal.
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So far, the partial results only provide conditions for the order of acyclic PH
distributions to be equal to the size of the representations. This, in itself, is important,
since it provides a means to determine whether an existing PH representation is already
minimal, or we should first try to find a smaller or even a minimal representation before
proceeding to use it. However, an algorithmic results would be useful. Such results
will allow us to obtain not only the order but also the minimal PH representations
themselves. We shall return to this issue in Section 4, where such algorithmic methods
are described.

3.2. General Phase-Type Distributions. For general PH distributions, namely cyclic
and acyclic, the following two theorems provide the lower bound of the number of the
state required to represent PH distributions.

Let m(u) be the mean of distribution p and o(p) be its standard deviation. Then
the coefficient of variation of the distribution is defined by:

Theorem 3.5 ([1]). Consider a PH representation of size n and let u be its PH distri-
bution, then:

Cu(p) =

< 5=

Moreover, the equality holds only in the case of n-state Erlang representations.

Theorem 3.5 establishes that it requires n—where n > W—states to represent

PH distributions with coefficient of variation Cv(p). Hence, in order to obtain a low
coefficient of variation, bigger PH representations are needed.

Theorem 3.6 ([8] in [6]). Let A be a PH-generator of size n. Let —Ay, A > 0, be its
eigenvalue with maximal real part and —Ao £1i6, Ay > 0 and 0 > 0, be any pair of its
complex eigenvalues. The following relation is satisfied:

LA
)\2*)\1_ TL'

Theorem 3.6 establishes that it requires n—where:

™

~ arctan (“;Al) ’

—states to represent such PH distributions. Since the poles of the LST of a PH dis-
tribution are eigenvalues of the PH-generator of any of its representation, the order of
the representation increases when the angle between the position of any complex poles
and the vertical line passing through the real dominating pole decreases [6]. This the-
orem assures us that finding a PH representation of a size that is exactly equal to the
algebraic degree of its PH distribution is not always possible.
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3.3. PH-Simplicity and Order. Let {X; | t € RZ%} be an absorbing Markov process
representing a PH distribution and let 7 be a random variable denoting its absorption
time.

Definition 3.1 ([14]). The dual or the time-reversal representation of the absorbing
Markov process {X; | t € R2%} is given by an absorbing Markov process {X, ; |t €
R=0}.

The relationship between the two processes can be described intuitively as follows:
the probability of being in state s at time ¢ in one Markov process is equal to the
probability of being in state s at time 7 — ¢ in the time-reversal Markov process and
vice versa.

Lemma 3.1 ([3, 5]). Given a PH representation (&, A), then its dual representation is
(3,B) such that:

=A™ and B=M1ATM,
where M = diag(m) is a diagonal matriz whose diagonal components are formed by the
components of vector m = —aAA™L.

Lemma 3.1 provides a recipe to obtain the dual representation of a given PH
representation. It is important to note that the size of both PH representation and its
dual are equal.

The notion of PH-simplicity, on the other hand, was first formalized in [17] and
it is closely related to the notion of simplicity in convex analysis.

Definition 3.2. A PH-generator A (of dimension n) is PH-simple if and only if for
any two n-dimensional substochastic vectors &y and da, where &y # da, PH(d1,A) #
PH(ds,A).

Theorem 3.7 ([3]). Given a PH representation of size n. If both PH-generators of the
representation and its dual representation are PH-simple, then the algebraic degree of
the associated PH distribution is n.

Theorem 3.7 establishes the relationship between PH-simplicity and the order of
PH distributions. In particular, the theorem maintains that if PH-generators of a PH
representation and of its dual representation are both PH-simple, than, no matter their
initial probability distributions, both representations are minimal and the order of the
associated PH distribution is equal to the size of the representations.

3.4. Mixture of Monocyclic Erlang. Figure 1 depicts an example of a monocyclic
Erlang representation in graph form.

The representation has n states and ends in an absorbing state, depicted by the
black circle. The representation is basically formed by a convolution of n exponential
distributions of the same rate A—hence, Erlang—but with a single cycle from the last
to the first state—hence, monocyclic—with rate pu < A.

Mocanu and Commault in [15] show that a conjugate pair of complex poles in the
LST of a PH distribution can be represented by a single monocyclic Erlang, and they
proceeded to prove Theorem 3.8.
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FIGURE 1. A Monocyclic Erlang Representation

Theorem 3.8 ([15]). Every PH distribution has a PH representation, which is ¢ mix-
ture of monocyclic Erlangs (MME).

Theorem 3.8 establishes that any PH distribution can be represented by a mix-
ture of monocyclic Erlang representation. This is done by constructing an MME
PH-generator based on the poles of the LST of the given PH distribution. Then a
“representation”—that is not necessarily Markovian, namely whose initial probability
vector is not substochastic—is formed by using the obtained PH-generator. A proper
PH representation is then looked for by repeatedly constructing Euler approximants in
a suitable space of probability distributions until a representation with a substochastic
vector is obtained. Each approximation adds a new state to the existing, intermediate
“representation” [15].

The procedure to obtain the mixture of monocyclic Erlang representation of a
PH distribution is not guaranteed to end with a minimal PH representation. Hence,
the order of the PH distribution still cannot be determined. However, the resulting
representation is sparse, in the sense that, even though it contains more states, it
contains only a small number of transitions.

In this section, we have described several partial results on the solution to the
problem of the order of PH distributions. In the field of acyclic PH distributions, aside
from the conditions described in the previous section, a complete solution has been
found as will be explained further in the next section.

In the field of general (cyclic) PH distributions, on the other hand, the partial
results are rather limited. Several lower bounds on the order of PH distributions have
been discovered (cf. Theorems 3.5 and 3.6). A condition specifying when a (cyclic) PH
representation is minimal, because its size is equal to the degree of its PH distribution,
has been provided (c¢f. Theorem 3.7). An complete algorithmic solution to the problem
of the order in the field of general PH distributions, however, does not exist yet. The
frontier in the algorithmic solution is provided in [15] (¢f. Theorem 3.8). The proposed
algorithm, nevertheless, only produces PH representations that are sparse but not nec-
essarily minimal. Hence, there is yet no way to determine the order of the associated
PH distributions.

4. OUR CONTRIBUTION

In this section, we will explore further on the algorithmic solution to the problem
in the field of acyclic PH distributions. In [10], HE and Zhang provided an algorithm
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for computing minimal ordered bidiagonal representations of acyclic PH distributions.
The algorithm of HE and Zhang starts by immediately transforming a given acyclic PH
distribution to a representation that only contains states that represent the poles of the
LST of the distribution. This representation is not necessarily a PH distribution, but
certainly a matrix-exponential distribution. If this is the case, another state and its total
outgoing rate are determined and appended to the representation. This is performed
one by one until a PH representation is obtained. The first PH representation found is a
minimal representation. The algorithm involves solving systems of non-linear equations
when additional states and their total outgoing rates are to be determined. Since non-
linear programming is difficult, the practicality of this algorithm for large models is not
obvious, and has not been investigated so far.

In the following, we will describe our contribution to the field, namely an algorithm
to reduce the size of acyclic PH representations. The algorithm is of cubic complexity
in the size of the state space, and only involves standard numerical computations. The
goal is to reduce the state space of the original representation one state by one state.
The algorithm returns a smaller or equal size representation than the original one.
However, unlike the algorithm of HE and Zhang, the result is not guaranteed to be
minimal. The algorithm starts by transforming a given acyclic PH representation to its
ordered bidiagonal representation. This transformation does not increase the number
of states. It then proceeds by removing “unnecessary” states while maintaining the
resulting representation to be phase-type. The removal of a state involves solving a
system of linear equations. This removal is repeated until no more removal is possible.
The algorithm is easy to implement and straightforward to parallelize. It only consists
of vector-matrix multiplications and the solutions of well-conditioned systems of linear
equations. Furthermore, because we are dealing with bidiagonal representations, these
operations can be carried out even more efficiently.

The exposition in the rest this section is based mainly on [22]. In the following,
we discuss a procedure to reduce the size of acyclic PH representations. The procedure
is roughly as follows: (1) Given an acyclic PH distribution with representation (&, A),
it is transformed into an ordered bidiagonal representation (57 Bi(A1, Mg, -+, \,)) by
using the spectral polynomial algorithm[9], without increasing its size. (2) A smaller
representation is obtained by eliminating unnecessary states from the ordered bidiagonal
representation. If successful, the resulting representation is also an ordered bidiagonal
representation with fewer states.

L-terms. The LST of an exponential distribution with rate A is given by f(s) = S i -

Let L(\) = Si’\, i.e., the reciprocal of the LST. We call a single expression of L(-) an
L-term. The LST of an ordered bidiagonal representation (5, Bi(A1, A2, -+, Ay)) can

be written as:

= b1 B2 Bn
1) = T o) T T0w) L) T I0w)
51+ﬁ2 (/\1)+ Jrﬂn ( )"’L()‘nfl)

LA)L(A2) -+ L(An) ’
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but this may not be in irreducible ratio form. Here the denominator polynomial corre-
sponds exactly to the sequence of the transition rates of the ordered bidiagonal represen-
tation, and thus its degree is equal to the size of the ordered bidiagonal representation.

Reduction. Observing (3), we see that in order to remove a state from the ordered
bidiagonal representation, we have to find a common L-term in both the numerator and
denominator polynomials. If we find that, we might be able to drop a state from the
representation. But removing a common L-term from the numerator and denominator
involves redistributing the initial probability distribution. This may not be possible,
because the resulting vector 5 may not be substochastic (a vector § is substochastic if
5 > 0and 61 < 1). Otherwise, a state can be removed. The procedure of identifying
and properly removing a state from an ordered bidiagonal representation is based on
Lemma 4.1 (see [21] for proof).

Let M E(&, A, &) denote the matrix-exponential (ME) distribution of representa-
tion (&, A, ). The set of PH distributions is a subset of ME distributions. In particular,
the initial distribution vector @ in an ME representation is allowed to be non-stochastic
vector, as long as 0 < >, &@; < 1. Let T|I be a vector of dimension & whose components
are all equal to 1.

Lemma 4.1. If for some 1 <i<mn, 14+ P2L(A1)+---+BiL(A1) - L(A;i—1) is divisible
by L(\;) then there exists a unique vector § such that:

PH(B,Bi(A, -+, M) = ME(§,Bi(h, -+ Aict, Aty 5 An), D).
If vector 5 is substochastic, then
PH(E7 Bi(>\17 e 7)‘11)) = PH(5: Bi()‘h e 7>\i—17 >\i+17 e 7>\n))

If both conditions are fulfilled, then switching from the given representation
(57 Bi(A1, -+, A,)) to the smaller representation (5‘7 Bi(A1, -, Ai—1, Aig1, 00 5 M) means
reducing the size from n to n — 1. Algorithmically, we investigate the two conditions
for a given )\;. The divisibility of the numerator polynomial is obtained by checking
whether R(—\;) = 0, where R(s) is the numerator polynomial in (3). The substochas-

ticity (i.e., the absence of nonnegative components) of § is checked while computing it,
as explained below.

Let Bi; := Bi(\y, -, \;), Biy := Bi(\y,--- ,\;_1). Lemma 4.2 (see [21] for
proof) states that we can simply ignore the last n — ¢ states in both bidiagonal chains.

Lemma 4.2. If §; = Bj41, fori < j <n—1, then:
PH(gaBi(/\h o :)‘n)) = ME(S:Bi()\la 7/\i717/\i+17" : 7/\n)af|n71)

implies:
PH([B1,--,B:],Bi1) = ME([01, - ,0;_1], Bia, I];_1). (4)

From (4), we obtain:

[ﬁl, e ,BZ] eXp(Bilt)ﬂl = [617 e 761'71} exp(Bigt) T|l',1. (5)
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Therefore, to compute [d1,- - ,0;—1] from [B1,---,Bi], i — 1 equations relating their
components are needed. Equation (5) can be evaluated at ¢ — 1 different ¢ values
to obtain such a required system of equations. However, such function evaluations in
practice are costly, because they involve matrix exponentiations. We proceed differently.

For a PH representation (&, A), the j-th derivative of its distribution function,
for j € N9 is:

a7 . N
@F(t) = —aA7 exp(At)l.
Evaluating these derivatives at ¢ = 0 allows us to avoid computing the exponential of
matrices. Hence, the components of vector [01,- - ,d;—1] can be computed by solving:
[01,---,0—1]Bi(Ag, -~ a)\i—l)jﬂi—l
Once the system of equations (6) is solved, the substochasticity of vector [d1,- - , ;1]

can be determined simply by verifying that all of its entries are nonnegative real num-
bers.

However, we observe that for any bidiagonal PH-generator of dimension d,
BI[S“ 87;] = *Bi[si, 87;+1],

for 1 <4 < d. Since both PH-generators in the system of equations are bidiagonal, we
can prove the following lemma [21].

Lemma 4.3. Equations (6) can be transformed into:
Alsy,-- 8] =, (7)
where A is an upper triangular matriz of dimension i — 1.

This transformation requires O(i?) multiplications and O(i?) additions.

Algorithm. Lemma 4.1 can thus be turned into an algorithm that reduces the size of
a given APH representation («, A), which we give here in an intuitive form.

(1) Use SPA to turn (@, A) into (5, Bi(A1,-- -, An)), which takes O(n3) time.
(2) Set i to 2.
(3) While i < n:
(a) Check divisibility w.r.t. A; (i.e., R(\;) = 0), which takes O(n) time.
(b) If not divisible (i.e., R(\;) # 0), continue the while-loop with 7 is set to
1+ 1.
Otherwise, construct (7), and then solve it by backward substitution. This
takes O(n?) time, and produces (5: Bi(A1, -, Aot A, s Ag)). I vee-
tor & is substochastic (which takes O(n) time to check), continue with the
PH representation (5, Bi(A1, -, Ai—1, Aig1, -+, An)) and then decrease n
to n — 1; otherwise continue the while-loop with (57 Bi(A1,---,A\n)) and 4
is set to ¢ + 1.
(4) Return (8, Bi(A1,- -+, An)).
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In each iteration of the while-loop, either n is decreased, or 7 is increased. As a
consequence, the reduction algorithm terminates in O(n?) time, and produces a reduced
representation of the original input (a, A). We refer to [21] for a more exhaustive
discussion.

Properties of the Algorithm. In the following, we discuss several properties of the
proposed algorithm:

(1) Non-minimality for the general case. Even though the algorithm reduces the
size of given acyclic PH representations, it does not always produce minimal
representations. An example is provided in [22] to show why this is the case.

(2) Minimality for triangular ideal PH distributions. A PH distribution is called
triangular ideal if it has acyclic PH representations whose size is equal to the
degree of the PH distribution. Theorems 3.5, 3.6, and 3.7 establish conditions
under which an acyclic PH distribution is triangular ideal. We may encounter
such an acyclic PH distribution, however, in a representation having strictly
larger size than the order of its distribution. In this case, verifying the con-
ditions will be difficult. Even more so if we wish to build a representation of
the same size as the order of the distribution. Given an acyclic PH representa-
tion whose PH distribution is triangular ideal—no matter how large the size of
the representation is—the proposed algorithm is certain to produce a minimal
representation [22].

(3) A realistic case study has demonstrated the use of the proposed algorithm
in [22]. A further case study in [21] shows the feasibility of using the pro-
posed algorithm to reduce the size of acyclic PH representations from a trillion
of states to thousands of states.

5. CONCLUDING REMARKS

This paper has described one of the most interesting research problems in the
area of phase-type distributions: the problem of their order and hence their minimal
representations. Several partial solutions to the problem have been discussed. For
acyclic phase-type distributions, the problem has basically been solved. An algorithm
that is guaranteed to transform any given acyclic phase-type representation to its min-
imal representation has been proposed in [10]. Although the algorithm involves solving
non-linear programming, which can be difficult, highly unstable and prone to numerical
errors, this algorithm is an excellent basis for further developments and improvements.
Based on our own proposed algorithm to reduce the size of acyclic phase-type represen-
tations, we think that to achieve minimality, non-linearity seems to be unavoidable.

For the general phase-type distributions, the problem is still open. Currently
available partial results are restricted to conditions for minimality without algorithmic
possibilities. The only algorithmic method that we are aware of is the algorithm pro-
posed in [15]. However, this algorithm only strives for obtaining sparse representations,
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not minimal ones. Nevertheless, we think that this algorithm is also an excellent ba-
sis for further developments and improvements towards an algorithm that can produce
minimal representations, since the output of the algorithm is quite similar to ordered
bidiagonal representations.
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