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Abstract—This paper reports on an implementation of 
transformation of PROMELA models into Channel Systems, 
which will be further transformed into Labeled Transition 
Systems (LTSs). The objective of this transformation is to 
obtain a formal semantics for further model checking 
purposes. A Channel System is a way to describe 
communicating processes that run in parallel, where each 
process is represented by a Program Graph (PG). The main 
part of a Program Graph is a location transition which 
consists of the initial location, a guard which determines 
whether the transition is executable or not, an action that 
will be executed in the location transition, and the next 
location. This paper defined the location transition for 
PROMELA constructs such as assignments, communication 
actions, if-fi, do-od, and atomic steps. 
 

Keywords—PROMELA, Channel Systems, Program 
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I.  INTRODUCTION 

PROMELA is a high-level language to describe a 
model of a system for model checking purpose. Systems 
that have been modeled in PROMELA can be verified 
formally using SPIN model checker. Building an 
abstraction/model of a system is the first key to a 
successful model checking. With an easy to understand 
language and ability to model concurrent systems, 
PROMELA and SPIN have reached an important position 
in the model-checking world. 

 System modeled in PROMELA can be verified using 
SPIN so that the correctness is guaranteed. After it is 
verified, the modeled system has to be implemented to 
become a real application. The transformation from 
PROMELA model to application, all this time, is 
performed by human by manually programming it in some 
high-level programming language. This process is proned 
to errors and mistakes. It is much more convenient and 
preferable if a verified PROMELA model can be 
automatically transformed into an application, e.g. 
application in Java language. 

Transformation from modeling language to 
implementation language is a big endeavour, and has to be 
done carefully; this process can be viewed in Fig. 1. The 
transformation itself has to be verified too; which means 

that it has to maintain the overall correctness. To achieve 
the correctness of the transformation, the semantics of the 
PROMELA model and Java program are needed. We have 
to make sure that both semantics are equivalent. This can 
be done by transforming the PROMELA model to a 
Labeled Transition System (LTS) and, similarly, the Java 
program to another LTS, then proving that there is an 
equvalence notion relating both LTSs. LTSs are a 
universal structure and have a clear semantics. The 
problem is that a PROMELA model cannot be translated 
into an LTS as is, because the PROMELA model may 
contain communication actions among its concurrent 
processes. One way to transform PROMELA to LTS is via 
Channel System. Channel System is a formalism that 
supports communications among concurrent processes via 
message passing and shared memory. From the resulting 
Channel System, we can then expand their constituent 
Program Graphs into an LTS.  

For that purpose, it is necessary to transform 
PROMELA into Channel Systems, as a preliminary step in 
a work to achieve correct applications from verified 
models. This paper deals with the transformation of 
PROMELA to Channel Systems, which is defined in the 
style of operational semantic rules. There are several paper 
describing works on operational semantics of PROMELA, 
e.g. Natarajan and Holzmann into symbolic LTSs [1], 
where basic operational semantics are provided with 
symbolic notations. Weise [2] uses Structured Operational 
Semantics (SOS) approach, where each step is divided into 
three incremental stages, i.e. declaration, single processes, 
and parallel processes. Bevier works in transforming 
PROMELA into ACL2 logic [3]; ACL2 logic is a 
theorem-proving logic for integrating model checking and 
theorem prover methods. Del Mar Galardo uses 
generalized operational semantics [4] for abstract model 
checking. Channel System itself is formalized by Baier 
and Katoen [5] and it is used as semantic base for 
nanoPROMELA language (a derivative and simpler 
version of PROMELA). 
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Fig. 1. Transformation of PROMELA to Java 

II.  FORMAL DEFINITIONS 

A. Program Graph 

According to Baier and Katoen [5] Program Graph PG 
over set Var of typed variables is a tuple (Loc, Act, Effect, 
↪, Loc0, g0), where: 

 Loc is a finite set of location. 
 Act is a set of action. 
 Effect: Act × Eval(var) ⟶ Eval(var); is the effect 

function.  For  example,  if  α  is  x=x+y  then, Effect(α;;  
[x=1;y=7])=[x=8;y=7]. Effect describes the result 
in variable value, which  changes  when  an  action  α  
is executed. 

 ↪ ⊆ Loc × Cond(Var) × Act × Loc, is the 
conditional transition relation. Cond(Var) is a 
boolean condition defined on the set of variables. If 
the condition holds true   then   action   α   will   be  
executed and then there will be transition to next 
location. 

 Loc0 ⊆ Loc is a set of initial locations. 
 g0 ⊆ Cond(Var) is the initial condition. 

A. Channel Systems 

Baier dan Katoen [5] describes that inside a system, a 
process will communicate with other processes using 
channels. Channel System is a way to describe 
communications among concurrent processes inside a 
system.  A Channel System CS over (Var, Chan) consists 
of n (data-dependent) process P1 until Pn. Each Pi is a 
Program Graph PGi with communication action extension. 
We denote a Channel System as: 

CS = [P1 |P2 | ...| Pn] 
where Pi is a Program Graph over (Var, Chan), where: 

 Var is a set of variable. 
 Chan is a set of channels, each (say channel c) with 

capacity cap(c) and domain dom(c).  
So we can denote: 

𝑃 = (𝐿𝑜𝑐, 𝐴𝑐𝑡, 𝐸𝑓𝑓𝑒𝑐𝑡, ↪, 𝐿𝑜𝑐, 𝑔). 
A transition in the Channel System is a common 

conditional transition labeled by guard and action or 

labeled with guard and communication action between 
sending and receiving processes: c!v is sending value v 
through channel c, and c?x is receiving message through 
channel c and put the value in variable x. 

C. PROMELA 

PROMELA is an input language for SPIN model 
checker. It is used to specify or model a system for model 
checking purpose. PROMELA is an acronym for Process 
Meta-Language. The use of the term meta is significant in 
this context. As we shall see, abstraction is often a key to 
successful verifications. The specification language is 
intended to make it easier to find good abstractions for 
systems designs. PROMELA is not meant to be an 
implementation language but a systems description 
language. To make this possible, the emphasis in the 
language is on the modeling of process synchronization 
and coordination, and not on computation. The language is 
also targeted to the description of concurrent software 
systems, rather than the description of hardware circuits 
(which is more common for model checking applications) 
[6]. 

A PROMELA model P consist of a finite number of 
processes P1,..., Pn  to be executed concurrently. 
PROMELA supports communications over shared 
variables and message passing along either synchronous or 
buffered FIFO-channels. The stepwise behaviour of the 
processes Pi is specified in PROMELA using a guarded 
command language [7, 8] with several features of classical 
imperative programming languages (such as variable 
assignment, conditional and repetitive commands, 
sequential composition), communication actions where 
processes may send and receive messages from the 
channels, and atomic regions that avoid undesired 
interleavings. Guarded commands are been used as labels 
for the edges of Program Graphs and Channel Systems. 
They consists of a condition (guard) and an action. 
PROMELA does not use action names, but specifies the 
effect of actions by statements of the guarded command 
language [5]. 

The main ingredients of the statements that formalize 
the stepwise behaviour of the processes Pi are the atomic 
commands skip, variable assignment x = expr, 
communication actions c?x (reading a value for variable x 
from channel c) and c!expr (sending the current value of 
an expression over channel c), conditional commands (if-
then-else) and (while) loops. Instead of the standard if-
then-else constructs or while-loops, PROMELA supports 
nondeterministic choices and allows specifying a finite 
number of guarded commands in conditional and repetitive 
commands. Syntax of PROMELA statement can be 
viewed in Fig. 2. 

 

Fig. 2. Syntax of PROMELA statements 
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III.   SEMANTICS OF PROMELA 
The operational semantics of a PROMELA statement 

with variables and channels from (Var, Chan) is given by a 
Program Graph over (Var, Chan). The Program Graphs 
PG1, ..., PGn for the processes P1,..., Pn of a PROMELA 
model P =[P1| ...|Pn] constitute a Channel Systems over 
(Var, Chan) [5]. 

The Program Graph associated with a PROMELA 
statement stmt formalizes the control flow when executing 
stmt. That is, the sub-statements play the role of the 
locations. For modeling termination, a special location exit 
is used. The set of sub-statement of PROMELA statement 
stmt is recursively defined. For statement stmt ∈{skip, 
x=expr, c?x, c!expr} the set of sub-statements is 
sub(stmt)={stmt,exit}. For sequential composition let:  

𝑠𝑢𝑏(𝑠𝑡𝑚𝑡ଵ;  𝑠𝑡𝑚𝑡ଶ) = {𝑠𝑡𝑚𝑡 ′; 𝑠𝑡𝑚𝑡ଶ  ห  𝑠𝑡𝑚𝑡 ′ ∈
𝑠𝑢𝑏(𝑠𝑡𝑚𝑡ଵ)\{𝑒𝑥𝑖𝑡}}   ∪ 𝑠𝑢𝑏(𝑠𝑡𝑚𝑡ଶ). 

 

For conditional commands, the set of sub-statements is 
defined as the set consisting of the if-fi statement itself and 
sub-statements of its guarded commands. That is, for 
𝑖𝑓 ∶ :   𝑔ଵ →    𝑠𝑡𝑚𝑡ଵ … ∷   𝑔 →   𝑠𝑡𝑚𝑡𝑓𝑖 we have: 

𝑠𝑢𝑏(𝑐𝑜𝑛𝑑_𝑐𝑚𝑑) = {𝑐𝑜𝑛𝑑_𝑐𝑚𝑑  } ∪   ⋃ 𝑠𝑢𝑏(𝑠𝑡𝑚𝑡)ଵஸஸ . 
The sub-statements of a loop given by 𝑑𝑜 ∶ :   𝑔ଵ →

  𝑠𝑡𝑚𝑡ଵ … ∷   𝑔 →    𝑠𝑡𝑚𝑡  𝑜𝑑  is defined similarly, but 
taking into account that control moves back to loop when 
guarded commands terminate. That is: 

𝑠𝑢𝑏(𝑙𝑜𝑜𝑝) =
{𝑙𝑜𝑜𝑝, 𝑒𝑥𝑖𝑡} ∪ ⋃ {𝑠𝑡𝑚𝑡 ′; 𝑙𝑜𝑜𝑝  หଵஸஸ   𝑠𝑡𝑚𝑡 ′ ∈
  𝑠𝑢𝑏(𝑠𝑡𝑚𝑡)\  {𝑒𝑥𝑖𝑡}}. 

For atomic regions, we let 𝑠𝑢𝑏(𝑎𝑡𝑜𝑚𝑖𝑐{𝑠𝑡𝑚𝑡}) =
{𝑎𝑡𝑜𝑚𝑖𝑐{𝑠𝑡𝑚𝑡}, 𝑒𝑥𝑖𝑡}. 

Baier and Katoen [5] also provide the inference rules 
for PROMELA constructs. The inference rules for atomic 
commands (skip, assignment, communication action) and 
sequential composition, conditional and repetitive 
commands give rise to the edges of a large Program Graph 
where the set of locations agrees with the set of 
PROMELA statements. Thus, the edges have the form: 

 
where stmt is a PROMELA   statement,      stmt’   a   sub-
statement  of  stmt,  and  g  a  guard,  α  an  action,  and  comm  a  
communication action c?x or c!expr. The subgraph 
consisting of the sub-statements of Pi then yields the 
Program Graph PGi of process Pi as a component of the 
program P. 

The semantics of the atomic statement skip is given by 
a single axiom formalizing that the execution of skip 
terminates in one step without affecting the variables: 

 

where id denotes an action that does not change the values 
of   the   variables,   i.e.,   Effect(id,   η)   =   η   for   all   variable  
evaluations   η.   Similarly,   the   execution   of   a   statement  
consisting of an assignment x = expr has the trivial guard 
and terminates in one step: 

 
where assign(x, expr) denotes the action that changes the 
value of x according to the assignment x = expr and does 
not effect the other variables. For the communication 
actions c!expr and c?x, the following axioms apply: 

 
The effect of an atomic region atomic{x1 = expr1; ... ; 

xm = exprm} is the cumulatve effect of the assignments xi = 
expri. It can be defined by the rule: 

 
where  α0 =   id,  αi = Effect(assign(xi, expri),  Effect(αi-1,η))  
for  1  ≤  i  ≤  m. 

Sequential composition stmt1; stmt2 is defined by two 
rules that distinguish whether or not stmt1 terminates in 
one step. If the first step of stmt1 leads to a location 
(statement) different from exit, then the following rule 
applies: 

 
If, however, the computation of stmt1 terminates in one 
step   by   executing   action   α,   then   control   of   stmt1;;   stmt2  
moves  to  stmt2  after  executing  α: 

 
The effect of a conditional command 𝑐𝑜𝑛𝑑_𝑐𝑚𝑑 =

𝑖𝑓 ∶ :   𝑔ଵ →    𝑠𝑡𝑚𝑡ଵ … ∷   𝑔 →   𝑠𝑡𝑚𝑡  𝑓𝑖 is formalized by 
means of the following rule: 

 
This rule relies on the two step semantics, where the 
selection of an enabled guarded command and the 
execution of its first action are split into two steps. 

For loops, say 𝑙𝑜𝑜𝑝 = 𝑑𝑜 ∶ :   𝑔ଵ →    𝑠𝑡𝑚𝑡ଵ … ∷   𝑔 →
  𝑠𝑡𝑚𝑡  𝑜𝑑 we deal with two rules. The rules also rely on 
the two step semantics. The first rule is similar to the rule 
for conditional commands, but taking into account that 
control moves back to loop after the execution of the 
selected guarded command has been completed. This 
correspond to the following rule: 
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If the action is break, then the do-od loop will be 

aborted. This is formalized by the following axiom: 

 

IV.   DESIGN AND IMPLEMENTATION 

The transformator tool has a PROMELA file with .pml 
extension as an input file. The content of the file has to be 
recognized so that the transformation can be done to 
Program Graph. To recognize the content, we need to 
build lexer and parser. Lexer works to recognize the input 
file into a token. Then a parser will recognize the meaning 
(semantics) of a token. In programming, recognizing the 
words is done via a method call, which represents the 
structure of the words, so that the sequence of method calls 
shows the sequence of input words structures [9]. The 
meaningful token then will be transformed into part of 
Channel Systems. Parts of the code that will be 
transformed into Channel System include global variable 
declaration, proctype declaration, local variable 
declaration, and statement inside proctype. Java codes are 
added to recognize variable, change variable object 
attribute, change Program Graph and state object attribute, 
and build internal data structures that will be used to 
generate Channel Systems. Fig. 3 shows the system 
workflow of the transformation tool. 

 
Fig. 3.  The System Workflow of the Transformation Tool 

The output of parsing will determine the structures, 
which part is a variable declaration, which part is a 
proctype declaration, which part is iterative structure (do-
od), which part is conditional command (if-fi), and so on. 
Along with the recognizion process, after the token is 
recognized as one of the structures it is then transformed 
into Channel Systems, by changing proctype into Program 
Graph and generating the transition locations based on 
known structures. The transition location is based on 
formal semantic definition of PROMELA syntax. The 
recognization and the generation of Channel Systems use 
depth search first method. 

A. Output File Design 
The general form of Channel Systems that will be built 

is as shown in Fig. 4. Channel Systems consist of CS 
declaration, global variable declaration, active Program 
Graph declaration, and prototype of all Program Graphs 
(active and inactive). Inside the prototype of Program 
Graphs, there may be local variable declaration, and 
transition locations, which consists of initial location, 
guard, action, and next location. Atomic structure is 
wrapped in keyword atomic begin-atomic end. This 
keyword means to mark that all transition locations inside 
the keyword is done within a single state transition, which 
means that no interleaving is allowed. 

 

  

  

  

  

  

  

  

  

  
Fig. 4.  Output File Design 

B.  PROMELA Grammar 
PROMELA file is parsed using ANTLR (Another Tool 

for Language Recognition) [10]. First, the grammar of 
PROMELA has to be specified. The grammar used in this 
system is based on PROMELA grammar of Holzmann 
[11] with proper changes, as shown in Fig. 5 and Fig. 6. 

Channel System name_CS 
over var, chan 
... 
CS = [PG0 || PG1] 
Begin 
PG0 instance of p() 
over var, chan 
... 
Begin 
loc_init [guard] [action] loc_next; 
... 
atomic begin 
loc_init [guard] [action] loc_next 
atomic end 
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Fig. 5. PROMELA Grammar Part 1 

 
Fig. 6. PROMELA Grammar Part 2 

V.   RESULT 

The PROMELA to Channel Systems transformation 
tool is made without GUI, because it emphasizes in the 
transformation process. The result of transformation is 
validated by comparing the output with the semantics 
described above. 

In the following, we briefly give several examples, 
demonstrating the validation of the transformation. The 
first one is for declaration of processes in PROMELA as 
shown in Fig. 7. 

 
Fig. 7. Declaration Processes 

There will be three processes active, two instances of 
prosesa (one is declared using keyword active, and the 
other is declared using keyword run inside init process), 
and one instance of init process. Thus, the transformation 
should show three processes, as depicted in Fig. 8 as the 
transformation output. 

 
Fig. 8.  Transformation Output 

Inside the first example, there is assignment a = 2, with 
trivial guard and it terminates in one step; the output is 
fitted in with the semantics: 

grammar promela; 
spec : module+ EOF ; 
module : proctype | init | mtype | decl_lst; 
separator :    ';'  |  '-''>' ; 
proctype:  ('active' ('[' constant ']')?)? 
'proctype' name '(' (decl_lst)? ')' '{' sequence 
* '}'; 
init: 'init' '{' sequence * '}'; 
mtype : 'mtype' ('=' )? '{' name ( ',' name 
)*'}' (';')?; 
decl_lst : one_decl (';' one_decl)* (';')? ; 
one_decl: typeID ivar (',' ivar)*; 
typeID:  'boolean' | 'int' | 'mtype' | 'chan' | 
'short'| 'byte'         | 'bit' | 'pid' ; 
sequence: step ( separator step )* (';')? ; 
step : one_decl | stmnt ; 
ivar: name ( '[' any_expr ']')?('=' any_expr  | 
'=' ch_init )?;  
ch_init :  '[' any_expr ']' 'of'  '{' typeID 
(',' typeID  )* '}'; 
varref : name  ('[' any_expr ']'  )? ('.' name)? 
; 
send_args: arg_lst  | any_expr   '('  ( arg_lst  
)? ')'; 
receive : varref '?' recv_args; 
arg_lst : any_expr ( ',' any_expr  ) *; 
assignx:  varref ('=' any_expr  | '+' '+' | '-' 
'-'  | '!' send_args | '?' recv_args) ; 
stmnt 
:'if' ifoption 'fi'   |  'do' dooption 'od'   | 
'atomic'  '{' sequence '}'  
  | '{' sequence '}'  | assignx  | 'printf' '(' 
'"' name '"' ')'  
  | 'goto' name  | 'skip' | 'break' | name ':' 
stmnt  
  | 'run' name  '(' (arg_lst)? ')' | 'assert' 
any_expr ; 
recv_args: recv_arg  ( ',' recv_arg) *  |  
recv_arg '(' recv_args ')'; 
recv_arg: varref | 'eval' '(' varref ')'  | ( '-
')? constant; 
dooption : ':' ':'  (guard '-''>')? sequence ( 
':' ':'  (guard '-''>')? sequence  ) *; 
ifoption: ':' ':' (guard '-''>')? sequence ( ':' 
':' (guard '-''>')? sequence ; 
guard: any_expr | receive | 'else'; 
binarop: '+' | '-' | '*' | '/' | '>' ('=')? | 
'<' ('=')? | '=' '='  | '!' '=' | '&' ('&')? | 
MOD | '^' | '|' '|'  ; 
unarop: '~' | '-' | '!'; 
any_expr:    '(' any_expr ('-' '>' any_expr ':' 
any_expr)? ')' (binarop any_expr)? 
    | unarop any_expr (binarop any_expr)? 
    | 'len' '(' varref ')' (binarop any_expr)? 
    | varref  ('?' '[' recv_args ']')?  (binarop 
any_expr)? 
    | constant  (binarop any_expr)? 
    |'timeout' (binarop any_expr)? 
    | chanpoll (binarop any_expr)?; 
 

chanpoll: 'full'  '(' varref ')'  
    | 'empty'  '(' varref ')'  
    | 'nfull'  '(' varref ')'  
    | 'nempty' '(' varref ')' ; 
name: ID (ID | NUMBER)*; 
WS  :   (' '|'\t'|'\n'|'\r')+ {skip();} ; 
ID : ('a'..'z' |'A'..'Z' |'_' )+ ; 
NUMBER : '0'..'9'+; 
MOD : '%'; 
constant : 'true' | 'false' | 'skip' | NUMBER; 

int a = 0; 
active proctype prosesa() { 
a = 1; 
} 
init { 
a = 2; 
run prosesa(); 
} 

Channel System proses 
over var, chan 
a int [-2^31-1..2^31-1] 0 
CS = [PG0 || PG1 || PG2] 
Begin 
PG0, PG1 instances of prosesa() 
over var, chan 
Begin 
loc1 [true] [a=1] loc2; 
End 
PG2 instance of init() 
over var, chan 
Begin 
loc3 [true] [a=2] loc4; 
loc4 [true] [run prosesa()] loc5; 
End 
End 
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Keyword run is considered as an action so it follows 
assignment semantics. 

The second example is if-fi construct in PROMELA as 
shown in Fig. 9. 

 
Fig. 9. if-fi Construct 

There are two branches from the if statement, one with 
the keyword a == 0, other if a is not 0 (else keyword). 
According to if semantics, we use two step semantics: 

 
When making transition to check the guard, it will execute 
action id (action without effect), then it will continue with 
transition for executing command after the guard (i.e. b++ 
for a == 0 guard, sequential compotition for else guard). 
Here we can see that the sequential compotition with the 
computation of first statement terminates in one step, so it 
must follow the semantics: 

 
The transformation result is depicted in Fig. 10 and it 

complies with the semantics. 

 
Fig. 10. Transformation Output 

For nondeterministic if-fi, the guard will be trivial, all 
true, so it will not check the guard and terminates in one 
step (not two step). The third PROMELA example shown 
in Fig. 11 is nondeterministic if-fi. 

 
Fig. 11. Nondeterministic if-fi 

 The transformation result will shown two branches 
from loc1 and there is no guard checking, as shown in Fig. 
12. 

 
Fig. 12. Transformation Output 

The fourth example is do-od construct as shown in Fig. 
13. 

 
Fig. 13.  do-od Construct 

Execution of a++ will be continued as long as a<5 holds. If 
not, it will execute break. The loop uses two step 
semantics, so first it has to check the guard, and then 
executes the statement after the guard. After executing the 
statement, it will back to loop. This semantics can be 
written as: 

 
Break is a keyword for terminating the loop, so when it 
encounters break, it will go to location exit, as in 
semantics: 

 
The transformation result complies with the semantics, 

as shown in Fig. 14. 

int a = 0; 
init{ 
int b = 5; 
if :: a == 0 -> b++; 
   :: else -> b--; a = a+b; 
fi 
} 

Channel System iffi 
over var, chan 
a int [-2^31-1..2^31-1] 0 
CS = [PG0] 
Begin 
PG0 instance of init() 
over var, chan 
b int [-2^31-1..2^31-1] 5 
Begin 
loc1 [a==0] [id] loc2; 
loc2 [true] [b++] loc3; 
loc1 [else] [id] loc4; 
loc4 [true] [b--] loc5; 
loc5 [true] [a=a+b] loc6; 
loc3 [true] [id] loc7; 
loc6 [true] [id] loc7; 
End 

init { 
int b; 
if :: b=0; 
   :: b=1; 
fi 
} 

Channel System iffi 
over var, chan 
CS = [PG0] 
Begin 
PG0 instance of init() 
over var, chan 
b int [-2^31-1..2^31-1] 0 
Begin 
loc1 [true] [b=0] loc2; 
loc1 [true] [b=1] loc3; 
loc2 [true] [id] loc4; 
loc3 [true] [id] loc4; 
End 
End 

init { 
int a = 0; 
do :: a<5 -> a++; 
     :: else -> break; 
od 
} 
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Fig. 14.  Transformation Output 

The validation is also done using other constructs and 
has shown proper results. More complex examples are also 
used to make sure all constructs will make a proper 
composition, such as the Szymanski mutual exclusion 
protocol [12] is modeled in PROMELA then transformed 
into Channel Systems. The transformation result shows 
location transitions comply with the semantics. 

VI.  CONCLUDING REMARKS 

The PROMELA language has been succesfully 
transformed into Channel Systems. Channel Systems as an 
operational semantics of PROMELA have a clear 
semantics and can be implemented as above. All results 
show that every construct used in the example is 
transformed well and complied with the semantics. The 
more complex example is not shown here due to page 
limitation, but has been checked and gives proper result 
that follows with the semantics. As the Channel System 
can be obtained from PROMELA language, the work can 
continue to form Labeled Transition Systems (LTSs) 
which is the final structure that is intended to achieve. 
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Channel System example 
over var, chan 
CS = [PG0] 
Begin 
PG0 instance of init() 
over var, chan 
a int [-2^31-1..2^31-1] 0; 
Begin 
loc1 [a<5] [id] loc2; 
loc2 [true] [a++] loc3; 
loc3 [true] [id] loc1; 
loc1 [else] [id] loc4; 
loc4 [true] [id] loc5; 
End 
End 


