
188 Proceedings of the 2013 International Conference on Computer Science and Information Technology (CSIT-2013)

Transformation of PROMELA to Channel
Systems

Sheila Nurul Huda

Jurusan Teknik Informatika, Fakultas Teknologi Industri
Universitas Islam Indonesia

Jl. Kaliurang Km. 14 Yogyakarta, Indonesia, 55501
Tel +62274895287 ext.122, Faks. +62274895007 ext.148

sheila@staff.uii.ac.id

Reza Pulungan
Jurusan Ilmu Komputer dan Elektronika, Fakultas Matematika

dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada
FMIPA Gedung Selatan, Sekip Unit III

Kotak Pos BLS. 21 Yogyakarta, Indonesia, 55281
Tel/Fax +62274546194
pulungan@ugm.ac.id

Abstract—This paper reports on an implementation of
transformation of PROMELA models into Channel Systems,
which will be further transformed into Labeled Transition
Systems (LTSs). The objective of this transformation is to
obtain a formal semantics for further model checking
purposes. A Channel System is a way to describe
communicating processes that run in parallel, where each
process is represented by a Program Graph (PG). The main
part of a Program Graph is a location transition which
consists of the initial location, a guard which determines
whether the transition is executable or not, an action that
will be executed in the location transition, and the next
location. This paper defined the location transition for
PROMELA constructs such as assignments, communication
actions, if-fi, do-od, and atomic steps.

Keywords—PROMELA, Channel Systems, Program
Graphs, Model Chesking.

I. INTRODUCTION

PROMELA is a high-level language to describe a
model of a system for model checking purpose. Systems
that have been modeled in PROMELA can be verified
formally using SPIN model checker. Building an
abstraction/model of a system is the first key to a
successful model checking. With an easy to understand
language and ability to model concurrent systems,
PROMELA and SPIN have reached an important position
in the model-checking world.

 System modeled in PROMELA can be verified using
SPIN so that the correctness is guaranteed. After it is
verified, the modeled system has to be implemented to
become a real application. The transformation from
PROMELA model to application, all this time, is
performed by human by manually programming it in some
high-level programming language. This process is proned
to errors and mistakes. It is much more convenient and
preferable if a verified PROMELA model can be
automatically transformed into an application, e.g.
application in Java language.

Transformation from modeling language to
implementation language is a big endeavour, and has to be
done carefully; this process can be viewed in Fig. 1. The
transformation itself has to be verified too; which means

that it has to maintain the overall correctness. To achieve
the correctness of the transformation, the semantics of the
PROMELA model and Java program are needed. We have
to make sure that both semantics are equivalent. This can
be done by transforming the PROMELA model to a
Labeled Transition System (LTS) and, similarly, the Java
program to another LTS, then proving that there is an
equvalence notion relating both LTSs. LTSs are a
universal structure and have a clear semantics. The
problem is that a PROMELA model cannot be translated
into an LTS as is, because the PROMELA model may
contain communication actions among its concurrent
processes. One way to transform PROMELA to LTS is via
Channel System. Channel System is a formalism that
supports communications among concurrent processes via
message passing and shared memory. From the resulting
Channel System, we can then expand their constituent
Program Graphs into an LTS.

For that purpose, it is necessary to transform
PROMELA into Channel Systems, as a preliminary step in
a work to achieve correct applications from verified
models. This paper deals with the transformation of
PROMELA to Channel Systems, which is defined in the
style of operational semantic rules. There are several paper
describing works on operational semantics of PROMELA,
e.g. Natarajan and Holzmann into symbolic LTSs [1],
where basic operational semantics are provided with
symbolic notations. Weise [2] uses Structured Operational
Semantics (SOS) approach, where each step is divided into
three incremental stages, i.e. declaration, single processes,
and parallel processes. Bevier works in transforming
PROMELA into ACL2 logic [3]; ACL2 logic is a
theorem-proving logic for integrating model checking and
theorem prover methods. Del Mar Galardo uses
generalized operational semantics [4] for abstract model
checking. Channel System itself is formalized by Baier
and Katoen [5] and it is used as semantic base for
nanoPROMELA language (a derivative and simpler
version of PROMELA).

189 Proceedings of the 2013 International Conference on Computer Science and Information Technology (CSIT-2013)

Fig. 1. Transformation of PROMELA to Java

II. FORMAL DEFINITIONS

A. Program Graph

According to Baier and Katoen [5] Program Graph PG
over set Var of typed variables is a tuple (Loc, Act, Effect,
↪, Loc0, g0), where:

 Loc is a finite set of location.
 Act is a set of action.
 Effect: Act × Eval(var) ⟶ Eval(var); is the effect

function. For example, if α is x=x+y then, Effect(α;;
[x=1;y=7])=[x=8;y=7]. Effect describes the result
in variable value, which changes when an action α
is executed.

 ↪ ⊆ Loc × Cond(Var) × Act × Loc, is the
conditional transition relation. Cond(Var) is a
boolean condition defined on the set of variables. If
the condition holds true then action α will be
executed and then there will be transition to next
location.

 Loc0 ⊆ Loc is a set of initial locations.
 g0 ⊆ Cond(Var) is the initial condition.

A. Channel Systems

Baier dan Katoen [5] describes that inside a system, a
process will communicate with other processes using
channels. Channel System is a way to describe
communications among concurrent processes inside a
system. A Channel System CS over (Var, Chan) consists
of n (data-dependent) process P1 until Pn. Each Pi is a
Program Graph PGi with communication action extension.
We denote a Channel System as:

CS = [P1 |P2 | ...| Pn]
where Pi is a Program Graph over (Var, Chan), where:

 Var is a set of variable.
 Chan is a set of channels, each (say channel c) with

capacity cap(c) and domain dom(c).
So we can denote:

𝑃 = (𝐿𝑜𝑐, 𝐴𝑐𝑡, 𝐸𝑓𝑓𝑒𝑐𝑡, ↪, 𝐿𝑜𝑐, 𝑔).
A transition in the Channel System is a common

conditional transition labeled by guard and action or

labeled with guard and communication action between
sending and receiving processes: c!v is sending value v
through channel c, and c?x is receiving message through
channel c and put the value in variable x.

C. PROMELA

PROMELA is an input language for SPIN model
checker. It is used to specify or model a system for model
checking purpose. PROMELA is an acronym for Process
Meta-Language. The use of the term meta is significant in
this context. As we shall see, abstraction is often a key to
successful verifications. The specification language is
intended to make it easier to find good abstractions for
systems designs. PROMELA is not meant to be an
implementation language but a systems description
language. To make this possible, the emphasis in the
language is on the modeling of process synchronization
and coordination, and not on computation. The language is
also targeted to the description of concurrent software
systems, rather than the description of hardware circuits
(which is more common for model checking applications)
[6].

A PROMELA model P consist of a finite number of
processes P1,..., Pn to be executed concurrently.
PROMELA supports communications over shared
variables and message passing along either synchronous or
buffered FIFO-channels. The stepwise behaviour of the
processes Pi is specified in PROMELA using a guarded
command language [7, 8] with several features of classical
imperative programming languages (such as variable
assignment, conditional and repetitive commands,
sequential composition), communication actions where
processes may send and receive messages from the
channels, and atomic regions that avoid undesired
interleavings. Guarded commands are been used as labels
for the edges of Program Graphs and Channel Systems.
They consists of a condition (guard) and an action.
PROMELA does not use action names, but specifies the
effect of actions by statements of the guarded command
language [5].

The main ingredients of the statements that formalize
the stepwise behaviour of the processes Pi are the atomic
commands skip, variable assignment x = expr,
communication actions c?x (reading a value for variable x
from channel c) and c!expr (sending the current value of
an expression over channel c), conditional commands (if-
then-else) and (while) loops. Instead of the standard if-
then-else constructs or while-loops, PROMELA supports
nondeterministic choices and allows specifying a finite
number of guarded commands in conditional and repetitive
commands. Syntax of PROMELA statement can be
viewed in Fig. 2.

Fig. 2. Syntax of PROMELA statements

190 Proceedings of the 2013 International Conference on Computer Science and Information Technology (CSIT-2013)

III. SEMANTICS OF PROMELA
The operational semantics of a PROMELA statement

with variables and channels from (Var, Chan) is given by a
Program Graph over (Var, Chan). The Program Graphs
PG1, ..., PGn for the processes P1,..., Pn of a PROMELA
model P =[P1| ...|Pn] constitute a Channel Systems over
(Var, Chan) [5].

The Program Graph associated with a PROMELA
statement stmt formalizes the control flow when executing
stmt. That is, the sub-statements play the role of the
locations. For modeling termination, a special location exit
is used. The set of sub-statement of PROMELA statement
stmt is recursively defined. For statement stmt ∈{skip,
x=expr, c?x, c!expr} the set of sub-statements is
sub(stmt)={stmt,exit}. For sequential composition let:

𝑠𝑢𝑏(𝑠𝑡𝑚𝑡ଵ; 𝑠𝑡𝑚𝑡ଶ) = {𝑠𝑡𝑚𝑡 ′; 𝑠𝑡𝑚𝑡ଶ ห 𝑠𝑡𝑚𝑡 ′ ∈
𝑠𝑢𝑏(𝑠𝑡𝑚𝑡ଵ)\{𝑒𝑥𝑖𝑡}} ∪ 𝑠𝑢𝑏(𝑠𝑡𝑚𝑡ଶ).

For conditional commands, the set of sub-statements is
defined as the set consisting of the if-fi statement itself and
sub-statements of its guarded commands. That is, for
𝑖𝑓 ∶ : 𝑔ଵ → 𝑠𝑡𝑚𝑡ଵ … ∷ 𝑔 → 𝑠𝑡𝑚𝑡𝑓𝑖 we have:

𝑠𝑢𝑏(𝑐𝑜𝑛𝑑_𝑐𝑚𝑑) = {𝑐𝑜𝑛𝑑_𝑐𝑚𝑑 } ∪ ⋃ 𝑠𝑢𝑏(𝑠𝑡𝑚𝑡)ଵஸஸ .
The sub-statements of a loop given by 𝑑𝑜 ∶ : 𝑔ଵ →

 𝑠𝑡𝑚𝑡ଵ … ∷ 𝑔 → 𝑠𝑡𝑚𝑡 𝑜𝑑 is defined similarly, but
taking into account that control moves back to loop when
guarded commands terminate. That is:

𝑠𝑢𝑏(𝑙𝑜𝑜𝑝) =
{𝑙𝑜𝑜𝑝, 𝑒𝑥𝑖𝑡} ∪ ⋃ {𝑠𝑡𝑚𝑡 ′; 𝑙𝑜𝑜𝑝 หଵஸஸ 𝑠𝑡𝑚𝑡 ′ ∈
 𝑠𝑢𝑏(𝑠𝑡𝑚𝑡)\ {𝑒𝑥𝑖𝑡}}.

For atomic regions, we let 𝑠𝑢𝑏(𝑎𝑡𝑜𝑚𝑖𝑐{𝑠𝑡𝑚𝑡}) =
{𝑎𝑡𝑜𝑚𝑖𝑐{𝑠𝑡𝑚𝑡}, 𝑒𝑥𝑖𝑡}.

Baier and Katoen [5] also provide the inference rules
for PROMELA constructs. The inference rules for atomic
commands (skip, assignment, communication action) and
sequential composition, conditional and repetitive
commands give rise to the edges of a large Program Graph
where the set of locations agrees with the set of
PROMELA statements. Thus, the edges have the form:

where stmt is a PROMELA statement, stmt’ a sub-
statement of stmt, and g a guard, α an action, and comm a
communication action c?x or c!expr. The subgraph
consisting of the sub-statements of Pi then yields the
Program Graph PGi of process Pi as a component of the
program P.

The semantics of the atomic statement skip is given by
a single axiom formalizing that the execution of skip
terminates in one step without affecting the variables:

where id denotes an action that does not change the values
of the variables, i.e., Effect(id, η) = η for all variable
evaluations η. Similarly, the execution of a statement
consisting of an assignment x = expr has the trivial guard
and terminates in one step:

where assign(x, expr) denotes the action that changes the
value of x according to the assignment x = expr and does
not effect the other variables. For the communication
actions c!expr and c?x, the following axioms apply:

The effect of an atomic region atomic{x1 = expr1; ... ;

xm = exprm} is the cumulatve effect of the assignments xi =
expri. It can be defined by the rule:

where α0 = id, αi = Effect(assign(xi, expri), Effect(αi-1,η))
for 1 ≤ i ≤ m.

Sequential composition stmt1; stmt2 is defined by two
rules that distinguish whether or not stmt1 terminates in
one step. If the first step of stmt1 leads to a location
(statement) different from exit, then the following rule
applies:

If, however, the computation of stmt1 terminates in one
step by executing action α, then control of stmt1;; stmt2
moves to stmt2 after executing α:

The effect of a conditional command 𝑐𝑜𝑛𝑑_𝑐𝑚𝑑 =

𝑖𝑓 ∶ : 𝑔ଵ → 𝑠𝑡𝑚𝑡ଵ … ∷ 𝑔 → 𝑠𝑡𝑚𝑡 𝑓𝑖 is formalized by
means of the following rule:

This rule relies on the two step semantics, where the
selection of an enabled guarded command and the
execution of its first action are split into two steps.

For loops, say 𝑙𝑜𝑜𝑝 = 𝑑𝑜 ∶ : 𝑔ଵ → 𝑠𝑡𝑚𝑡ଵ … ∷ 𝑔 →
 𝑠𝑡𝑚𝑡 𝑜𝑑 we deal with two rules. The rules also rely on
the two step semantics. The first rule is similar to the rule
for conditional commands, but taking into account that
control moves back to loop after the execution of the
selected guarded command has been completed. This
correspond to the following rule:

191 Proceedings of the 2013 International Conference on Computer Science and Information Technology (CSIT-2013)

If the action is break, then the do-od loop will be

aborted. This is formalized by the following axiom:

IV. DESIGN AND IMPLEMENTATION

The transformator tool has a PROMELA file with .pml
extension as an input file. The content of the file has to be
recognized so that the transformation can be done to
Program Graph. To recognize the content, we need to
build lexer and parser. Lexer works to recognize the input
file into a token. Then a parser will recognize the meaning
(semantics) of a token. In programming, recognizing the
words is done via a method call, which represents the
structure of the words, so that the sequence of method calls
shows the sequence of input words structures [9]. The
meaningful token then will be transformed into part of
Channel Systems. Parts of the code that will be
transformed into Channel System include global variable
declaration, proctype declaration, local variable
declaration, and statement inside proctype. Java codes are
added to recognize variable, change variable object
attribute, change Program Graph and state object attribute,
and build internal data structures that will be used to
generate Channel Systems. Fig. 3 shows the system
workflow of the transformation tool.

Fig. 3. The System Workflow of the Transformation Tool

The output of parsing will determine the structures,
which part is a variable declaration, which part is a
proctype declaration, which part is iterative structure (do-
od), which part is conditional command (if-fi), and so on.
Along with the recognizion process, after the token is
recognized as one of the structures it is then transformed
into Channel Systems, by changing proctype into Program
Graph and generating the transition locations based on
known structures. The transition location is based on
formal semantic definition of PROMELA syntax. The
recognization and the generation of Channel Systems use
depth search first method.

A. Output File Design
The general form of Channel Systems that will be built

is as shown in Fig. 4. Channel Systems consist of CS
declaration, global variable declaration, active Program
Graph declaration, and prototype of all Program Graphs
(active and inactive). Inside the prototype of Program
Graphs, there may be local variable declaration, and
transition locations, which consists of initial location,
guard, action, and next location. Atomic structure is
wrapped in keyword atomic begin-atomic end. This
keyword means to mark that all transition locations inside
the keyword is done within a single state transition, which
means that no interleaving is allowed.

Fig. 4. Output File Design

B. PROMELA Grammar
PROMELA file is parsed using ANTLR (Another Tool

for Language Recognition) [10]. First, the grammar of
PROMELA has to be specified. The grammar used in this
system is based on PROMELA grammar of Holzmann
[11] with proper changes, as shown in Fig. 5 and Fig. 6.

Channel System name_CS
over var, chan
...
CS = [PG0 || PG1]
Begin
PG0 instance of p()
over var, chan
...
Begin
loc_init [guard] [action] loc_next;
...
atomic begin
loc_init [guard] [action] loc_next
atomic end

192 Proceedings of the 2013 International Conference on Computer Science and Information Technology (CSIT-2013)

Fig. 5. PROMELA Grammar Part 1

Fig. 6. PROMELA Grammar Part 2

V. RESULT

The PROMELA to Channel Systems transformation
tool is made without GUI, because it emphasizes in the
transformation process. The result of transformation is
validated by comparing the output with the semantics
described above.

In the following, we briefly give several examples,
demonstrating the validation of the transformation. The
first one is for declaration of processes in PROMELA as
shown in Fig. 7.

Fig. 7. Declaration Processes

There will be three processes active, two instances of
prosesa (one is declared using keyword active, and the
other is declared using keyword run inside init process),
and one instance of init process. Thus, the transformation
should show three processes, as depicted in Fig. 8 as the
transformation output.

Fig. 8. Transformation Output

Inside the first example, there is assignment a = 2, with
trivial guard and it terminates in one step; the output is
fitted in with the semantics:

grammar promela;
spec : module+ EOF ;
module : proctype | init | mtype | decl_lst;
separator : ';' | '-''>' ;
proctype: ('active' ('[' constant ']')?)?
'proctype' name '(' (decl_lst)? ')' '{' sequence
* '}';
init: 'init' '{' sequence * '}';
mtype : 'mtype' ('=')? '{' name (',' name
)*'}' (';')?;
decl_lst : one_decl (';' one_decl)* (';')? ;
one_decl: typeID ivar (',' ivar)*;
typeID: 'boolean' | 'int' | 'mtype' | 'chan' |
'short'| 'byte' | 'bit' | 'pid' ;
sequence: step (separator step)* (';')? ;
step : one_decl | stmnt ;
ivar: name ('[' any_expr ']')?('=' any_expr |
'=' ch_init)?;
ch_init : '[' any_expr ']' 'of' '{' typeID
(',' typeID)* '}';
varref : name ('[' any_expr ']')? ('.' name)?
;
send_args: arg_lst | any_expr '(' (arg_lst
)? ')';
receive : varref '?' recv_args;
arg_lst : any_expr (',' any_expr) *;
assignx: varref ('=' any_expr | '+' '+' | '-'
'-' | '!' send_args | '?' recv_args) ;
stmnt
:'if' ifoption 'fi' | 'do' dooption 'od' |
'atomic' '{' sequence '}'
 | '{' sequence '}' | assignx | 'printf' '('
'"' name '"' ')'
 | 'goto' name | 'skip' | 'break' | name ':'
stmnt
 | 'run' name '(' (arg_lst)? ')' | 'assert'
any_expr ;
recv_args: recv_arg (',' recv_arg) * |
recv_arg '(' recv_args ')';
recv_arg: varref | 'eval' '(' varref ')' | ('-
')? constant;
dooption : ':' ':' (guard '-''>')? sequence (
':' ':' (guard '-''>')? sequence) *;
ifoption: ':' ':' (guard '-''>')? sequence (':'
':' (guard '-''>')? sequence ;
guard: any_expr | receive | 'else';
binarop: '+' | '-' | '*' | '/' | '>' ('=')? |
'<' ('=')? | '=' '=' | '!' '=' | '&' ('&')? |
MOD | '^' | '|' '|' ;
unarop: '~' | '-' | '!';
any_expr: '(' any_expr ('-' '>' any_expr ':'
any_expr)? ')' (binarop any_expr)?
 | unarop any_expr (binarop any_expr)?
 | 'len' '(' varref ')' (binarop any_expr)?
 | varref ('?' '[' recv_args ']')? (binarop
any_expr)?
 | constant (binarop any_expr)?
 |'timeout' (binarop any_expr)?
 | chanpoll (binarop any_expr)?;

chanpoll: 'full' '(' varref ')'
 | 'empty' '(' varref ')'
 | 'nfull' '(' varref ')'
 | 'nempty' '(' varref ')' ;
name: ID (ID | NUMBER)*;
WS : (' '|'\t'|'\n'|'\r')+ {skip();} ;
ID : ('a'..'z' |'A'..'Z' |'_')+ ;
NUMBER : '0'..'9'+;
MOD : '%';
constant : 'true' | 'false' | 'skip' | NUMBER;

int a = 0;
active proctype prosesa() {
a = 1;
}
init {
a = 2;
run prosesa();
}

Channel System proses
over var, chan
a int [-2^31-1..2^31-1] 0
CS = [PG0 || PG1 || PG2]
Begin
PG0, PG1 instances of prosesa()
over var, chan
Begin
loc1 [true] [a=1] loc2;
End
PG2 instance of init()
over var, chan
Begin
loc3 [true] [a=2] loc4;
loc4 [true] [run prosesa()] loc5;
End
End

193 Proceedings of the 2013 International Conference on Computer Science and Information Technology (CSIT-2013)

Keyword run is considered as an action so it follows
assignment semantics.

The second example is if-fi construct in PROMELA as
shown in Fig. 9.

Fig. 9. if-fi Construct

There are two branches from the if statement, one with
the keyword a == 0, other if a is not 0 (else keyword).
According to if semantics, we use two step semantics:

When making transition to check the guard, it will execute
action id (action without effect), then it will continue with
transition for executing command after the guard (i.e. b++
for a == 0 guard, sequential compotition for else guard).
Here we can see that the sequential compotition with the
computation of first statement terminates in one step, so it
must follow the semantics:

The transformation result is depicted in Fig. 10 and it

complies with the semantics.

Fig. 10. Transformation Output

For nondeterministic if-fi, the guard will be trivial, all
true, so it will not check the guard and terminates in one
step (not two step). The third PROMELA example shown
in Fig. 11 is nondeterministic if-fi.

Fig. 11. Nondeterministic if-fi

 The transformation result will shown two branches
from loc1 and there is no guard checking, as shown in Fig.
12.

Fig. 12. Transformation Output

The fourth example is do-od construct as shown in Fig.
13.

Fig. 13. do-od Construct

Execution of a++ will be continued as long as a<5 holds. If
not, it will execute break. The loop uses two step
semantics, so first it has to check the guard, and then
executes the statement after the guard. After executing the
statement, it will back to loop. This semantics can be
written as:

Break is a keyword for terminating the loop, so when it
encounters break, it will go to location exit, as in
semantics:

The transformation result complies with the semantics,

as shown in Fig. 14.

int a = 0;
init{
int b = 5;
if :: a == 0 -> b++;
 :: else -> b--; a = a+b;
fi
}

Channel System iffi
over var, chan
a int [-2^31-1..2^31-1] 0
CS = [PG0]
Begin
PG0 instance of init()
over var, chan
b int [-2^31-1..2^31-1] 5
Begin
loc1 [a==0] [id] loc2;
loc2 [true] [b++] loc3;
loc1 [else] [id] loc4;
loc4 [true] [b--] loc5;
loc5 [true] [a=a+b] loc6;
loc3 [true] [id] loc7;
loc6 [true] [id] loc7;
End

init {
int b;
if :: b=0;
 :: b=1;
fi
}

Channel System iffi
over var, chan
CS = [PG0]
Begin
PG0 instance of init()
over var, chan
b int [-2^31-1..2^31-1] 0
Begin
loc1 [true] [b=0] loc2;
loc1 [true] [b=1] loc3;
loc2 [true] [id] loc4;
loc3 [true] [id] loc4;
End
End

init {
int a = 0;
do :: a<5 -> a++;
 :: else -> break;
od
}

194 Proceedings of the 2013 International Conference on Computer Science and Information Technology (CSIT-2013)

Fig. 14. Transformation Output

The validation is also done using other constructs and
has shown proper results. More complex examples are also
used to make sure all constructs will make a proper
composition, such as the Szymanski mutual exclusion
protocol [12] is modeled in PROMELA then transformed
into Channel Systems. The transformation result shows
location transitions comply with the semantics.

VI. CONCLUDING REMARKS

The PROMELA language has been succesfully
transformed into Channel Systems. Channel Systems as an
operational semantics of PROMELA have a clear
semantics and can be implemented as above. All results
show that every construct used in the example is
transformed well and complied with the semantics. The
more complex example is not shown here due to page
limitation, but has been checked and gives proper result
that follows with the semantics. As the Channel System
can be obtained from PROMELA language, the work can
continue to form Labeled Transition Systems (LTSs)
which is the final structure that is intended to achieve.

REFERENCES

[1] Natarajan, and G. J. Holzmann, “Outline for an Operational-

Semantics Definition of Promela,” in Proceedings of the 2nd
International Workshop on the SPIN Verification System,
DIMACS/Bell Labs/INRS-Telecommunications, 1996.

[2] Weise, “An incremental formal semantics for promela,” in
Proceedings of the Third SPIN Workshop, SPIN97, 1997.

[3] W. R. Bevier, “Toward an Operational Semantics of PROMELA in
ACL2,” in Proceedings of the Third SPIN Workshop, SPIN97,
1997.

[4] M. del Mar Gallardo, P. Merino, and E. Pimentel, “A Generalized
Semantics of PROMELA for Abstract Model Checking,” In
Formal Aspect of Computing, 2004.

[5] Baier, and J.-P. Katoen, Principles of Model-Checking,
Massachusetts: MIT Press, 2008.

[6] J. Holzmann, The Spin Model Checker, Primer and Reference
Manual, Addison Wesley, ISBN 0-321-22862-6, 2003.

[7] W. Dijkstra, A Dicipline of Programming, Prentice-Hall, 1976.
[8] R. Apt, and E.–R. Olderog, Verification of Sequential and

Concurrent Programs, Springer-Verlag, 1997.

[9] P. Sestoft, Grammars and Parsing with JAVA, Department of
Mathematics and Physics Royal Veterinary and Agricultural
University, Denmark, 1999.

[10] T. Parr, The Definitive ANTLR Reference,Texas: The Pragmatic
Bookshelf, 2007.

[11] J. Holzmann, SPIN Version6–PROMELA Grammar,
http://spinroot.com/spin/Man/grammar.html, May 2012.

[12] K. Szymanski, A Simple Solution to Lamport’s Concurrent
Programming Problem with Linear Wait, In Proceedings
International Conference on Supercomputing Systems, p. 621-626,
1988.

Channel System example
over var, chan
CS = [PG0]
Begin
PG0 instance of init()
over var, chan
a int [-2^31-1..2^31-1] 0;
Begin
loc1 [a<5] [id] loc2;
loc2 [true] [a++] loc3;
loc3 [true] [id] loc1;
loc1 [else] [id] loc4;
loc4 [true] [id] loc5;
End
End

